Electrokinetic injection techniques in microfluidic chips

L. M. Fu, R. J. Yang, G. B. Lee, H. H. Liu

研究成果: Article同行評審

112 引文 斯高帕斯(Scopus)


The separation efficiency of a microfluidic chip is influenced to a significant degree by the flow field conditions within the injection microchannel. Therefore, an understanding of the physics of the flow within this channel is beneficial in the design and operation of such a system. The configuration of an injection system is determined by the volume of the sample plug that is to be delivered to the separation process. Accordingly, this paper addresses the design and testing of injection systems with a variety of configurations, including a simple cross, a double-T, and a triple-T configuration. This paper also presents the design of a unique multi-T injection configuration. Each injection system cycles through a predetermined series of steps, in which the electric field magnitude and distribution within the various channels is strictly manipulated, to effectuate a virtual valve. The unique multi-T configuration injection system presented within this paper has the ability to simulate the functions of the cross, double-T, and triple-T systems through appropriate manipulations of the electric field within its various channels. In other words, the proposed design successfully combines several conventional injection systems within a single microfluidic chip.

頁(從 - 到)5084-5091
期刊Analytical Chemistry
出版狀態Published - 2002 10月 1

All Science Journal Classification (ASJC) codes

  • 分析化學


深入研究「Electrokinetic injection techniques in microfluidic chips」主題。共同形成了獨特的指紋。