Electron and muon g − 2, radiative neutrino mass, and ℓ′ → ℓγ in a U(1)e−μ model

Chuan Hung Chen, Takaaki Nomura

研究成果: Article同行評審

8 引文 斯高帕斯(Scopus)

摘要

A nonconventional U(1)e−μ gauge model is proposed to explain the observed neutrino masses and the unexpected anomalous magnetic moments of the electron and muon (lepton g−2), where for suppressing the neutrino coupling to Z gauge boson, only the right-handed electron and muon in the standard model carry the U(1)e−μ charge. Although the light lepton masses are suppressed when the gauge symmetry is spontaneously broken, they can be generated through the Yukawa couplings to newly introduced particles, such as vector-like lepton doublets and singlets, and scalar singlets. It is found that the same Yukawa couplings combined with the new scalar couplings to the Higgs can induce the radiative lepton-flavor violation processes ℓ→ℓγ and lepton g−2, where the lepton g−2 is proportional to m. When Majorana fermions and a scalar singlet are further added into the model, the active neutrinos can obtain masses via the radiative seesaw mechanism. When the bounds from the me and mμ and the neutrino data are satisfied, we find that the electron g−2 can reach an order of −10−12, and the muon g−2 can be an order of 10−9. In addition, when the μ→eγ decay is suppressed, the resulting branching ratio for τ→eγ can be of O(10−8), and that for τ→μγ can be as large as the current upper limit.

原文English
文章編號115314
期刊Nuclear Physics B
964
DOIs
出版狀態Published - 2021 三月

All Science Journal Classification (ASJC) codes

  • 核能與高能物理

指紋

深入研究「Electron and muon g − 2, radiative neutrino mass, and ℓ′ → ℓγ in a U(1)<sub>e−μ</sub> model」主題。共同形成了獨特的指紋。

引用此