End-to-end domain knowledge-assisted automatic diagnosis of idiopathic pulmonary fibrosis (IPF) using computed tomography (CT)

Wenxi Yu, Hua Zhou, Jonathan G. Goldin, Weng Kee Wong, Grace Hyun J. Kim

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

Purpose: Domain knowledge (DK) acquired from prior studies is important for medical diagnosis. This paper leverages the population-level DK using an optimality design criterion to train a deep learning model in an end-to-end manner. In this study, the problem of interest is at the patient level to diagnose a subject with idiopathic pulmonary fibrosis (IPF) among subjects with interstitial lung disease (ILD) using a computed tomography (CT). IPF diagnosis is a complicated process with multidisciplinary discussion with experts and is subject to interobserver variability, even for experienced radiologists. To this end, we propose a new statistical method to construct a time/memory-efficient IPF diagnosis model using axial chest CT and DK, along with an optimality design criterion via a DK-enhanced loss function of deep learning. Methods: Four state-of-the-art two-dimensional convolutional neural network (2D-CNN) architectures (MobileNet, VGG16, ResNet-50, and DenseNet-121) and one baseline 2D-CNN are implemented to automatically diagnose IPF among ILD patients. Axial lung CT images are retrospectively acquired from 389 IPF patients and 700 non-IPF ILD patients in five multicenter clinical trials. To enrich the sample size and boost model performance, we sample 20 three-slice samples (triplets) from each CT scan, where these three slices are randomly selected from the top, middle, and bottom of both lungs respectively. Model performance is evaluated using a fivefold cross-validation, where each fold was stratified using a fixed proportion of IPF vs non-IPF. Results: Using DK-enhanced loss function increases the model performance of the baseline CNN model from 0.77 to 0.89 in terms of study-wise accuracy. Four other well-developed models reach satisfactory model performance with an overall accuracy >0.95 but the benefits brought on by the DK-enhanced loss function is not noticeable. Conclusions: We believe this is the first attempt that (a) uses population-level DK with an optimal design criterion to train deep learning-based diagnostic models in an end-to-end manner and (b) focuses on patient-level IPF diagnosis. Further evaluation of using population-level DK on prospective studies is warranted and is underway.

原文English
頁(從 - 到)2458-2467
頁數10
期刊Medical Physics
48
發行號5
DOIs
出版狀態Published - 2021 5月

All Science Journal Classification (ASJC) codes

  • 生物物理學
  • 放射學、核子醫學和影像學

指紋

深入研究「End-to-end domain knowledge-assisted automatic diagnosis of idiopathic pulmonary fibrosis (IPF) using computed tomography (CT)」主題。共同形成了獨特的指紋。

引用此