Enhanced Model Predictive Direct Torque Control Applied to IPM Motor with Online Parameter Adaptation

Lon Jay Cheng, Mi Ching Tsai

研究成果: Article同行評審

17 引文 斯高帕斯(Scopus)

摘要

This paper presents an improved model-based predictive direct torque control (MPDTC) to improve torque accuracy and reduce torque ripples which is a major issue in conventional direct torque control (DTC). Hysteresis controllers and traditional DTC switching tables are replaced by a model predictive controller to achieve an online optimization for voltage space vector selection and optimal duty ratio modulation method for torque ripple reduction. In order to provide an accurate motor model for MPDTC, novel offline and online motor parameter estimation methods are proposed to improve performance of the proposed MPDTC. The proposed parameter estimation adopts Popov's hyper stability theorem to estimate accurate motor parameters, such as stator resistance, stator inductance and rotor flux linkage, which are critical for torque and flux estimation. The parameter adaptive MPDTC is verified by a hardware in the loop emulation platform, and experiment result is demonstrated using a dynamometer test bench, which therefore proves the feasibility of the proposed method.

原文English
文章編號9018213
頁(從 - 到)42185-42199
頁數15
期刊IEEE Access
8
DOIs
出版狀態Published - 2020

All Science Journal Classification (ASJC) codes

  • 一般電腦科學
  • 一般材料科學
  • 一般工程

指紋

深入研究「Enhanced Model Predictive Direct Torque Control Applied to IPM Motor with Online Parameter Adaptation」主題。共同形成了獨特的指紋。

引用此