TY - JOUR
T1 - Enhancement of urea oxidation reaction in alkaline condition via heterointerface engineering
AU - Nguyen, Thi Xuyen
AU - Wei, Zi Yun
AU - Zheng, Tai Ming
AU - Su, Yen Hsun
AU - Chuang, Kao Shu
AU - Ting, Jyh Ming
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/9/15
Y1 - 2024/9/15
N2 - Water electrolysis involving low energy barrier anodic urea oxidation reaction (UOR) is a promising way for hydrogen production. In this study, we present a superior heterostructured UOR electrocatalyst of (NiFeCo)Sx/FeOOH/NiFeCo(OH)x supported on conductive Ni foam prepared using a simple, ultrafast, energy-saving single-step corrosion engineering method. Leveraging the high conductivity of the (NiFeCo)Sx, plentiful Fe3+ in the amorphous FeOOH, high catalytic activity of the NiFeCo(OH)x, and abundant heterointerfaces, the resulting (NiFeCo)Sx/FeOOH/NiFeCo(OH)x electrode exhibits remarkable electrocatalytic performance toward UOR under alkaline condition. The electrocatalyst shows an ultra-low potential of 1.36 V at 100 mA cm−2, a small Tafel slope of 24.8 mV dec–1, and excellent stability. Density functional theory calculation shows that the multiple heterointerfaces provide synergistic effect of shifting the d-band center to optimize the intermediate chemisorption energy, thus boosting the catalytic kinetics for catalyzing UOR.
AB - Water electrolysis involving low energy barrier anodic urea oxidation reaction (UOR) is a promising way for hydrogen production. In this study, we present a superior heterostructured UOR electrocatalyst of (NiFeCo)Sx/FeOOH/NiFeCo(OH)x supported on conductive Ni foam prepared using a simple, ultrafast, energy-saving single-step corrosion engineering method. Leveraging the high conductivity of the (NiFeCo)Sx, plentiful Fe3+ in the amorphous FeOOH, high catalytic activity of the NiFeCo(OH)x, and abundant heterointerfaces, the resulting (NiFeCo)Sx/FeOOH/NiFeCo(OH)x electrode exhibits remarkable electrocatalytic performance toward UOR under alkaline condition. The electrocatalyst shows an ultra-low potential of 1.36 V at 100 mA cm−2, a small Tafel slope of 24.8 mV dec–1, and excellent stability. Density functional theory calculation shows that the multiple heterointerfaces provide synergistic effect of shifting the d-band center to optimize the intermediate chemisorption energy, thus boosting the catalytic kinetics for catalyzing UOR.
UR - http://www.scopus.com/inward/record.url?scp=85198562465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198562465&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.153841
DO - 10.1016/j.cej.2024.153841
M3 - Article
AN - SCOPUS:85198562465
SN - 1385-8947
VL - 496
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 153841
ER -