Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-Tc MnxGe1-x nanomesh

Tianxiao Nie, Jianshi Tang, Xufeng Kou, Yin Gen, Shengwei Lee, Xiaodan Zhu, Qinglin He, Li Te Chang, Koichi Murata, Yabin Fan, Kang L. Wang

研究成果: Article同行評審

19 引文 斯高帕斯(Scopus)

摘要

Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (T c), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn x Ge 1'x nanomeshes fabricated by nanosphere lithography, in which a T c above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from 1/48,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high T c in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.

原文English
文章編號12866
期刊Nature communications
7
DOIs
出版狀態Published - 2016 十月 20

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

指紋 深入研究「Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-T<sub>c</sub> Mn<sub>x</sub>Ge<sub>1-x</sub> nanomesh」主題。共同形成了獨特的指紋。

引用此