TY - JOUR
T1 - Establishment of an orthotopic transplantable gastric cancer animal model for studying the immunological effects of new cancer therapeutic modules
AU - Shan, Yan Shen
AU - Fang, Jung Hua
AU - Lai, Ming Derg
AU - Yen, Meng Chi
AU - Lin, Pin Wen
AU - Hsu, Hui Ping
AU - Lin, Chian Yuh
AU - Chen, Yi Ling
PY - 2011/10
Y1 - 2011/10
N2 - Tumor cell growth is influenced by the cellular microenvironment including the presence of immune cells and blood vessels. Currently, no transplantable gastric cancer syngeneic animal models exist; therefore, we set out to establish a mouse gastric carcinoma cell line, which was named mouse gastric carcinoma cell line 3I (MGCC3I), from forestomach carcinoma developed in benzo[a]pyrene-treated ICR mice. MGCC3I cells showed epithelial-like morphology, multinuclear giant cell formation, and retained an intestinal phenotype, which are similar to human gastric cancer carcinoma cells. The expression of gastric cancer markers MUC1, MUC2, and MUC5AC, and oncogenes c-myc, c-met, cyclin E1, and cancer stem cell marker CD44 was determined in MGCC3I cells. MGCC3I cells formed poorly differentiated stomach tumors following orthotopic implantation into the stomachs of syngeneic ICR mice. Histone deacetylase inhibitors are recognized as a new class of anticancer drugs. The immunological therapeutic effects of the histone deacetylase inhibitors sodium butyrate and valproic acid were evaluated in this new animal tumor model. Sodium butyrate inhibited MGCC3I stomach tumor formation in animal models. Increased tumor infiltration by CD8 T cells and neutrophils was observed in mice treated with sodium butyrate or valproic acid. Depletion of CD8 T cells significantly attenuated tumor regression mediated by histone deacetylase inhibitors, which is correlated with enhancement of the MHC class I pathway in MGCC3I cells. Taken together, we have successfully established an orthotopic transplantable gastric tumor animal model and demonstrated its usefulness in revealing the role of CD8 T cells in the therapeutic effects of sodium butyrate.
AB - Tumor cell growth is influenced by the cellular microenvironment including the presence of immune cells and blood vessels. Currently, no transplantable gastric cancer syngeneic animal models exist; therefore, we set out to establish a mouse gastric carcinoma cell line, which was named mouse gastric carcinoma cell line 3I (MGCC3I), from forestomach carcinoma developed in benzo[a]pyrene-treated ICR mice. MGCC3I cells showed epithelial-like morphology, multinuclear giant cell formation, and retained an intestinal phenotype, which are similar to human gastric cancer carcinoma cells. The expression of gastric cancer markers MUC1, MUC2, and MUC5AC, and oncogenes c-myc, c-met, cyclin E1, and cancer stem cell marker CD44 was determined in MGCC3I cells. MGCC3I cells formed poorly differentiated stomach tumors following orthotopic implantation into the stomachs of syngeneic ICR mice. Histone deacetylase inhibitors are recognized as a new class of anticancer drugs. The immunological therapeutic effects of the histone deacetylase inhibitors sodium butyrate and valproic acid were evaluated in this new animal tumor model. Sodium butyrate inhibited MGCC3I stomach tumor formation in animal models. Increased tumor infiltration by CD8 T cells and neutrophils was observed in mice treated with sodium butyrate or valproic acid. Depletion of CD8 T cells significantly attenuated tumor regression mediated by histone deacetylase inhibitors, which is correlated with enhancement of the MHC class I pathway in MGCC3I cells. Taken together, we have successfully established an orthotopic transplantable gastric tumor animal model and demonstrated its usefulness in revealing the role of CD8 T cells in the therapeutic effects of sodium butyrate.
UR - http://www.scopus.com/inward/record.url?scp=80052290886&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052290886&partnerID=8YFLogxK
U2 - 10.1002/mc.20668
DO - 10.1002/mc.20668
M3 - Article
C2 - 20737421
AN - SCOPUS:80052290886
SN - 0899-1987
VL - 50
SP - 739
EP - 750
JO - Molecular Carcinogenesis
JF - Molecular Carcinogenesis
IS - 10
ER -