Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods

Shen Ming Lee, T. Martin Lukusa, Chin Shang Li

研究成果: Article

摘要

Zero-inflated Poisson (ZIP) regression is widely applied to model effects of covariates on an outcome count with excess zeros. In some applications, covariates in a ZIP regression model are partially observed. Based on the imputed data generated by applying the multiple imputation (MI) schemes developed by Wang and Chen (Ann Stat 37:490–517, 2009), two methods are proposed to estimate the parameters of a ZIP regression model with covariates missing at random. One, proposed by Rubin (in: Proceedings of the survey research methods section of the American Statistical Association, 1978), consists of obtaining a unified estimate as the average of estimates from all imputed datasets. The other, proposed by Fay (J Am Stat Assoc 91:490–498, 1996), consists of averaging the estimating scores from all imputed data sets to solve the imputed estimating equation. Moreover, it is shown that the two proposed estimation methods are asymptotically equivalent to the semiparametric inverse probability weighting method. A modified formula is proposed to estimate the variances of the MI estimators. An extensive simulation study is conducted to investigate the performance of the estimation methods. The practicality of the methodology is illustrated with a dataset of motorcycle survey of traffic regulations.

原文English
頁(從 - 到)725-754
頁數30
期刊Computational Statistics
35
發行號2
DOIs
出版狀態Published - 2020 六月 1

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty
  • Computational Mathematics

指紋 深入研究「Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods」主題。共同形成了獨特的指紋。

  • 引用此