Estimation of annual groundwater changes from InSAR-derived land subsidence

Muhammad Zeeshan Ali, Hone Jay Chu, Tatas, Thomas J. Burbey

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

Understanding the extent and quantity of groundwater drawdown is critical for developing a mitigation strategy for water management. This study illustrates that the data-driven model can be used for the spatial estimation of groundwater drawdown using interferometric synthetic aperture radar (InSAR)-based deformation data. Here, InSAR derived from Sentinel-1 imagery is used to estimate surface deformations in the Choshui river alluvial fan, Taiwan, between 2016 and 2018. Spatial regression (SR) is applied to estimate the annual groundwater drawdown with a calculated R-square of 0.96, which is shown to be superior to a nonspatial model. This study demonstrates the potential of the satellite-based groundwater drawdown map prediction using InSAR-derived land deformation. In predication, the SR model can reliably catch the patterns of annual predicted drawdown without requiring detailed groundwater observations.

原文English
頁(從 - 到)622-632
頁數11
期刊Water and Environment Journal
36
發行號4
DOIs
出版狀態Published - 2022 11月

All Science Journal Classification (ASJC) codes

  • 環境工程
  • 水科學與技術
  • 污染
  • 管理、監督、政策法律

指紋

深入研究「Estimation of annual groundwater changes from InSAR-derived land subsidence」主題。共同形成了獨特的指紋。

引用此