Evaluation of Fracture Resistance in Aqueous Environment under Dynamic Loading of Lithium Disilicate Restorative Systems for Posterior Applications. Part 2

Matilda Dhima, Alan B. Carr, Thomas J. Salinas, Christine Lohse, Lawrence Berglund, Kai An Nan

研究成果: Article同行評審

25 引文 斯高帕斯(Scopus)

摘要

Purpose: The goals of part 2 of the study presented here were 1) to assess whether there is a difference in failure mode of different thicknesses (2.0, 1.5, 1.0, and 0.5 mm) of anatomically standardized full contour monolithic lithium disilicate restorations for posterior teeth, and 2) to assess if there is a difference among various crown thicknesses when these restorations are subjected to dynamic load forces common for posterior teeth. Materials and Methods: Four groups (n = 10), each with a different thickness of anatomically appropriate all-ceramic crowns, were to be tested as established from the statistical analysis of the preliminary phase. Group 1: 2.0 mm; group 2: 1.5 mm; group 3: 1.0 mm; group 4: 0.5 mm. The specimens were adhesively luted to the corresponding die, and underwent dynamic cyclic loading (380 to 390 N) completely submerged in an aqueous environment until a failure was noted by graphic recording and continuous monitoring. Results: There was a statistically significant difference of the fatigue cycles to failure among four groups (p < 0.001; Kruskal-Wallis test). The mean number of cycles to fail for 2.0 mm specimens was 17 times more than the mean number of cycles to fail for 1.0 mm specimens and 1.5 times more than the mean number of cycles to fail for 1.5 mm specimens. The 0.5 mm specimens failed with one cycle of loading. A qualitative characteristic noted among the 2.0 mm specimens was wear of the area of indenter contact followed by shearing of the material and/or crack propagation. Conclusion: Based on the findings of this study, it may be reasonable to consider a crown thickness of 1.5 mm or greater for clinical applications of milled monolithic lithium disilicate crowns for posterior single teeth.

原文English
頁(從 - 到)353-357
頁數5
期刊Journal of Prosthodontics
23
發行號5
DOIs
出版狀態Published - 2014 7月

All Science Journal Classification (ASJC) codes

  • 一般牙醫學

指紋

深入研究「Evaluation of Fracture Resistance in Aqueous Environment under Dynamic Loading of Lithium Disilicate Restorative Systems for Posterior Applications. Part 2」主題。共同形成了獨特的指紋。

引用此