Evidence for mitoxantrone-induced block of inwardly rectifying K channels expressed in the osteoclast precursor RAW 264.7 cells differentiated with lipopolysaccharide

Chung Lin Wang, Mei-Ling Tsai, Sheng-Nan Wu

研究成果: Article

7 引文 (Scopus)

摘要

Background/Aims: Mitoxanthrone (MX) is an anthracenedione antineoplastic agent. Whether this drug and other related compounds have any effects on ion currents in osteoclasts remains largely unclear. Methods: In this study, the effects of MX and other related compounds on inwardly rectifying K + current (I K(IR) ) were investigated in RAW 264.7 osteoclast precursor cells treated with lipopolysaccharide. Results: The I K(IR) in these cells are blocked by BaCl 2 (1 mM). MX (1-100 μM) decreased the amplitude of I K(IR) in a concentration-dependent manner with an IC 50 value of 6.4 μM. MX also slowed the time course of I K(IR) inactivation elicited by large hyperpolarization. Doxorubicin (10 μM), 17β-estradiol (10 μM) and tertiapin (1 μM) decreased the I K(IR) amplitude in these cells. In bafilomycin A 1 -treated cells, MX-mediated block of I K(IR) still existed. In cell-attached configuration, when the electrode was filled with MX (10 μM), the activity of inwardly rectifying K + (Kir) channels was decreased with no change in single-channel conductance. MX-mediated reduction of channel activity is accompanied by a shortening of mean open time. Under current-clamp conditions, addition of MX resulted in membrane depolarization. Therefore, MX can interact with the Kir channels to decrease amplitude and to depolarize the membrane in these cells. Conclusion: The block by the I K(IR)this drug of Kir2.1 channels appears to be one of the important mechanisms underlying its actions on the resorptive activity of osteoclasts, if similar results occur in vivo. Targeting at Kir channels may be clinically useful as an adjunctive regimen to anti-cancer drugs (e.g., MX or doxorubicin) in influencing the resorptive activity of osteoclasts.

原文English
頁(從 - 到)687-701
頁數15
期刊Cellular Physiology and Biochemistry
30
發行號3
DOIs
出版狀態Published - 2012 一月 1

指紋

Inwardly Rectifying Potassium Channel
Mitoxantrone
Osteoclasts
Lipopolysaccharides
Doxorubicin
Pharmaceutical Preparations
Anthraquinones
Antineoplastic Agents
Estradiol
Electrodes
Cell Membrane
RAW 264.7 Cells
Ions
Membranes
Neoplasms

All Science Journal Classification (ASJC) codes

  • Physiology

引用此文

@article{b5115f4e731e4b07a865546ce3f63a96,
title = "Evidence for mitoxantrone-induced block of inwardly rectifying K channels expressed in the osteoclast precursor RAW 264.7 cells differentiated with lipopolysaccharide",
abstract = "Background/Aims: Mitoxanthrone (MX) is an anthracenedione antineoplastic agent. Whether this drug and other related compounds have any effects on ion currents in osteoclasts remains largely unclear. Methods: In this study, the effects of MX and other related compounds on inwardly rectifying K + current (I K(IR) ) were investigated in RAW 264.7 osteoclast precursor cells treated with lipopolysaccharide. Results: The I K(IR) in these cells are blocked by BaCl 2 (1 mM). MX (1-100 μM) decreased the amplitude of I K(IR) in a concentration-dependent manner with an IC 50 value of 6.4 μM. MX also slowed the time course of I K(IR) inactivation elicited by large hyperpolarization. Doxorubicin (10 μM), 17β-estradiol (10 μM) and tertiapin (1 μM) decreased the I K(IR) amplitude in these cells. In bafilomycin A 1 -treated cells, MX-mediated block of I K(IR) still existed. In cell-attached configuration, when the electrode was filled with MX (10 μM), the activity of inwardly rectifying K + (Kir) channels was decreased with no change in single-channel conductance. MX-mediated reduction of channel activity is accompanied by a shortening of mean open time. Under current-clamp conditions, addition of MX resulted in membrane depolarization. Therefore, MX can interact with the Kir channels to decrease amplitude and to depolarize the membrane in these cells. Conclusion: The block by the I K(IR)this drug of Kir2.1 channels appears to be one of the important mechanisms underlying its actions on the resorptive activity of osteoclasts, if similar results occur in vivo. Targeting at Kir channels may be clinically useful as an adjunctive regimen to anti-cancer drugs (e.g., MX or doxorubicin) in influencing the resorptive activity of osteoclasts.",
author = "Wang, {Chung Lin} and Mei-Ling Tsai and Sheng-Nan Wu",
year = "2012",
month = "1",
day = "1",
doi = "10.1159/000341449",
language = "English",
volume = "30",
pages = "687--701",
journal = "Cellular Physiology and Biochemistry",
issn = "1015-8987",
publisher = "S. Karger AG",
number = "3",

}

TY - JOUR

T1 - Evidence for mitoxantrone-induced block of inwardly rectifying K channels expressed in the osteoclast precursor RAW 264.7 cells differentiated with lipopolysaccharide

AU - Wang, Chung Lin

AU - Tsai, Mei-Ling

AU - Wu, Sheng-Nan

PY - 2012/1/1

Y1 - 2012/1/1

N2 - Background/Aims: Mitoxanthrone (MX) is an anthracenedione antineoplastic agent. Whether this drug and other related compounds have any effects on ion currents in osteoclasts remains largely unclear. Methods: In this study, the effects of MX and other related compounds on inwardly rectifying K + current (I K(IR) ) were investigated in RAW 264.7 osteoclast precursor cells treated with lipopolysaccharide. Results: The I K(IR) in these cells are blocked by BaCl 2 (1 mM). MX (1-100 μM) decreased the amplitude of I K(IR) in a concentration-dependent manner with an IC 50 value of 6.4 μM. MX also slowed the time course of I K(IR) inactivation elicited by large hyperpolarization. Doxorubicin (10 μM), 17β-estradiol (10 μM) and tertiapin (1 μM) decreased the I K(IR) amplitude in these cells. In bafilomycin A 1 -treated cells, MX-mediated block of I K(IR) still existed. In cell-attached configuration, when the electrode was filled with MX (10 μM), the activity of inwardly rectifying K + (Kir) channels was decreased with no change in single-channel conductance. MX-mediated reduction of channel activity is accompanied by a shortening of mean open time. Under current-clamp conditions, addition of MX resulted in membrane depolarization. Therefore, MX can interact with the Kir channels to decrease amplitude and to depolarize the membrane in these cells. Conclusion: The block by the I K(IR)this drug of Kir2.1 channels appears to be one of the important mechanisms underlying its actions on the resorptive activity of osteoclasts, if similar results occur in vivo. Targeting at Kir channels may be clinically useful as an adjunctive regimen to anti-cancer drugs (e.g., MX or doxorubicin) in influencing the resorptive activity of osteoclasts.

AB - Background/Aims: Mitoxanthrone (MX) is an anthracenedione antineoplastic agent. Whether this drug and other related compounds have any effects on ion currents in osteoclasts remains largely unclear. Methods: In this study, the effects of MX and other related compounds on inwardly rectifying K + current (I K(IR) ) were investigated in RAW 264.7 osteoclast precursor cells treated with lipopolysaccharide. Results: The I K(IR) in these cells are blocked by BaCl 2 (1 mM). MX (1-100 μM) decreased the amplitude of I K(IR) in a concentration-dependent manner with an IC 50 value of 6.4 μM. MX also slowed the time course of I K(IR) inactivation elicited by large hyperpolarization. Doxorubicin (10 μM), 17β-estradiol (10 μM) and tertiapin (1 μM) decreased the I K(IR) amplitude in these cells. In bafilomycin A 1 -treated cells, MX-mediated block of I K(IR) still existed. In cell-attached configuration, when the electrode was filled with MX (10 μM), the activity of inwardly rectifying K + (Kir) channels was decreased with no change in single-channel conductance. MX-mediated reduction of channel activity is accompanied by a shortening of mean open time. Under current-clamp conditions, addition of MX resulted in membrane depolarization. Therefore, MX can interact with the Kir channels to decrease amplitude and to depolarize the membrane in these cells. Conclusion: The block by the I K(IR)this drug of Kir2.1 channels appears to be one of the important mechanisms underlying its actions on the resorptive activity of osteoclasts, if similar results occur in vivo. Targeting at Kir channels may be clinically useful as an adjunctive regimen to anti-cancer drugs (e.g., MX or doxorubicin) in influencing the resorptive activity of osteoclasts.

UR - http://www.scopus.com/inward/record.url?scp=84864403868&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84864403868&partnerID=8YFLogxK

U2 - 10.1159/000341449

DO - 10.1159/000341449

M3 - Article

C2 - 22854649

AN - SCOPUS:84864403868

VL - 30

SP - 687

EP - 701

JO - Cellular Physiology and Biochemistry

JF - Cellular Physiology and Biochemistry

SN - 1015-8987

IS - 3

ER -