Evolution of Angular Momentum and Center of Mass at Null Infinity

Po Ning Chen, Jordan Keller, Mu Tao Wang, Ye Kai Wang, Shing Tung Yau

研究成果: Article同行評審


We study how conserved quantities such as angular momentum and center of mass evolve with respect to the retarded time at null infinity, which is described in terms of a Bondi–Sachs coordinate system. These evolution formulae complement the classical Bondi mass loss formula for gravitational radiation. They are further expressed in terms of the potentials of the shear and news tensors. The consequences that follow from these formulae are (1) Supertranslation invariance of the fluxes of the CWY conserved quantities. (2) A conservation law of angular momentum à la Christodoulou. (3) A duality paradigm for null infinity. In particular, the supertranslation invariance distinguishes the CWY angular momentum and center of mass from the classical definitions.

頁(從 - 到)551-588
期刊Communications in Mathematical Physics
出版狀態Published - 2021 八月

All Science Journal Classification (ASJC) codes

  • 統計與非線性物理學
  • 數學物理學


深入研究「Evolution of Angular Momentum and Center of Mass at Null Infinity」主題。共同形成了獨特的指紋。