Experimental Prognostication of Ultra-High-Performance Lightweight Hybrid Fiber-Reinforced Concrete by Using Sintered Fly Ash Aggregate, Palm Oil Shell Aggregate, and Supplementary Cementitious Materials

Diptikar Behera, Kuang Yen Liu, Dineshkumar Gopalakrishnan

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

To create cost-effective structures, the modern construction industry has sought to reduce the dead load of buildings. Lightweight concrete is a quick way to reduce dead load. The current study is primarily concerned with identifying modern substitutes for coarse aggregate likely to aid in waste management and offer potential alternatives to the most exploited natural resources. According to ACI C 39-M, this study developed a novel lightweight hybrid fiber-reinforced concrete (LWHFRC) with a density of less than 1825 kg/m3 and compressive strength of 50 to 75 MPa. Ordinary Portland cement (53 Grade) was mixed with fly ash, silica fume, and GGBS. Sintered fly ash aggregate (SFA) and palm oil shell aggregate (POS) were used as coarse aggregates. Hooked steel fibers and polyvinyl alcohol fibers were combined in a hybrid form to improve crack propagation properties at the initial and subsequent stages. The water-to-binder ratio was kept constant at 0.30 to 0.35 with a 1% superplasticizer. Four volume fractions of hybrid fibers (both steel and PVA with Vf = 0%, 1%, 1.5%, and 2%) were added. In addition, XRD, SEM, EDS, and EDS mapping tests were performed to finalize the material’s chemical composition and crystalline structure. Furthermore, beams and cylinders were tested to determine the modulus of rupture, which was determined to be between 9.5 and 14 MPa by ACI code C 1609-M, and indirect tensile strength, achieved as 10 to 14 MPa by ACI code C 496-M. The researcher altered the modulus of elasticity (Ec) formula for lightweight concrete and discovered a relationship between fc’ and fcb, fc’ and fspt, and fcb and fspt. Finally, ANOVA and regression tests were run to check the significance of the experiment. The cost analysis revealed that the cost of LWHFRC increased by approximately 16.46%, while the strength increased by 55.98% compared to regular concrete.

原文English
文章編號5051
期刊Materials
15
發行號14
DOIs
出版狀態Published - 2022 7月

All Science Journal Classification (ASJC) codes

  • 材料科學(全部)
  • 凝聚態物理學

指紋

深入研究「Experimental Prognostication of Ultra-High-Performance Lightweight Hybrid Fiber-Reinforced Concrete by Using Sintered Fly Ash Aggregate, Palm Oil Shell Aggregate, and Supplementary Cementitious Materials」主題。共同形成了獨特的指紋。

引用此