Exploring potential contributors to endocrine disrupting activities in Taiwan's surface waters using yeast assays and chemical analysis

Pei Hsin Chou, Yi Ling Lin, Tong Cun Liu, Kuang Yu Chen

研究成果: Article同行評審

15 引文 斯高帕斯(Scopus)

摘要

Surface waters serve as sinks for anthropogenic contaminants, including naturally occurring hormones and a variety of synthetic endocrine active substances. To investigate the presence of endocrine active contaminants in the aquatic environment in Taiwan, river water and suspended solids were analyzed by yeast assays to examine the distribution of estrogenic, androgenic, and aryl hydrocarbon receptor agonist activities. The results showed that dry-season river samples exhibited strong estrogenic and aryl hydrocarbon receptor agonist activities, but no androgenic activity was detected. Owing to the ubiquitous detection of estrogenic activities in Taiwan's surface waters, samples were further subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for quantification of selected estrogenic compounds. LC-MS/MS results indicated that natural estrogens, such as estrone and 17β-estradiol were often the most contributing compounds for the bioassay-derived estrogenic activities due to their strong estrogenic potencies and high detection frequencies, whereas high concentrations of bisphenol A and nonylphenol also posed a threat to the aquatic ecosystems in Taiwan. Water samples eliciting strong estrogenic activities were further fractionated using high performance liquid chromatography, and significant estrogenic activities were detected in fractions containing estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A. Also, the presence of unidentified estrogenic compounds was found in few river water samples. Further identification of unknown endocrine active substances is necessary to better protect the aquatic environment in Taiwan.

原文English
文章編號16408
頁(從 - 到)814-820
頁數7
期刊Chemosphere
138
DOIs
出版狀態Published - 2015 11月 1

All Science Journal Classification (ASJC) codes

  • 環境工程
  • 環境化學
  • 化學 (全部)
  • 污染
  • 健康、毒理學和誘變

指紋

深入研究「Exploring potential contributors to endocrine disrupting activities in Taiwan's surface waters using yeast assays and chemical analysis」主題。共同形成了獨特的指紋。

引用此