Extending sample information for small data set prediction

Hung Yu Chen, Der Chiang Li, Liang Sian Lin

研究成果: Conference contribution

7 引文 斯高帕斯(Scopus)

摘要

This paper proposes a method that focuses on creating new data attributes by using fuzzy operations for solving small dataset learning problems. Using the idea of fuzzy rules, the membership value of antecedents in each rule can be extracted from the data point. Therefore, in this research, those membership values will be deemed as new data features and the data dimensionality will be extended. To test the effectiveness of the proposed method, the data set with new data features and the one with no special treatment will be utilized respectively to build predictive models. Paired t-test is carried out to see how effective the proposed method can improve the learning on the basis of small sample sets.

原文English
主出版物標題Proceedings - 2016 5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016
編輯Ayako Hiramatsu, Tokuro Matsuo, Akimitsu Kanzaki, Norihisa Komoda
發行者Institute of Electrical and Electronics Engineers Inc.
頁面710-714
頁數5
ISBN(電子)9781467389853
DOIs
出版狀態Published - 2016 8月 31
事件5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016 - Kumamoto, Japan
持續時間: 2016 7月 102016 7月 14

出版系列

名字Proceedings - 2016 5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016

Other

Other5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016
國家/地區Japan
城市Kumamoto
期間16-07-1016-07-14

All Science Journal Classification (ASJC) codes

  • 資訊系統
  • 電腦網路與通信
  • 電腦科學應用
  • 電腦視覺和模式識別

指紋

深入研究「Extending sample information for small data set prediction」主題。共同形成了獨特的指紋。

引用此