Fabrication and Characterization of AlGaN/GaN Enhancement-Mode MOSHEMTs with Fin-Channel Array and Hybrid Gate-Recessed Structure and LiNbO3Ferroelectric Charge Trap Gate-Stack Structure

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

In this work, a hybrid combination structure of fin-channel array, gate-recessed structure, and LiNbO3 ferroelectric charge trap gate-stacked oxide layers was utilized in AlGaN/gallium nitride (GaN) enhancement-mode metal-oxide-semiconductor high-electron-mobility transistors (E-MOSHEMTs). The C+ ferroelectric polarization of the LiNbO3 blocking layer, deposited by a pulsed laser deposition system, increased the stored amount of electron charges in the HfO2 charge trap layer, leading to a high positive threshold voltage of 2.9 V for the enhancement mode operation. In studying the initialization features, it was found that the threshold voltage shifted to a more positive voltage with an increase of initialization voltage. The devices changed to enhancement-mode from depletion-mode when the gate voltage larger than 4 V was applied to initialize the devices. Compared with a planar channel structure, the devices with 500-nm-wide fin-channel array structure improved the maximum extrinsic trans conductance from 89.5 to 110.9 mS/mm, the sub thres hold swing from 224.8 to 120.5 mV/dec, the extrinsic unit gain cutoff frequency from 5.0 to 7.4 GHz, the maximum oscillation frequency from 9.1 to 11.7 GHz, and the normalized noise power from 1.9 × 10-14 to 2.5 × 10-15 Hz-1.

原文English
頁(從 - 到)500-506
頁數7
期刊IEEE Transactions on Electron Devices
69
發行號2
DOIs
出版狀態Published - 2022 2月 1

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 電氣與電子工程

指紋

深入研究「Fabrication and Characterization of AlGaN/GaN Enhancement-Mode MOSHEMTs with Fin-Channel Array and Hybrid Gate-Recessed Structure and LiNbO3Ferroelectric Charge Trap Gate-Stack Structure」主題。共同形成了獨特的指紋。

引用此