TY - JOUR
T1 - Fast positioning and impact minimizing of MEMS devices by suppression of motion-induced vibration by command-shaping method
AU - Ou, Kuang Shun
AU - Chen, Kuo Shen
AU - Yang, Tian Shiang
AU - Lee, Sen Yung
N1 - Funding Information:
Manuscript received February 2, 2010; revised October 5, 2010; accepted November 27, 2010. Date of publication January 6, 2011; date of current version February 2, 2011. This work was supported in part by the National Science Council, Taiwan, under Grants NSC94-2212-E006-046 and NSC97-2221-E-006-152-MY3 and in part by the Industrial Technology Research Institute, Taiwan, under Contract 97C073. Subject Editor R. Ghodssi.
PY - 2011/2
Y1 - 2011/2
N2 - Electrostatic (ES) force is one of the most important actuation mechanisms for microelectromechanical systems (MEMS) devices. However, residual vibration of microstructures induced by ES actuation can bring various problems that degrade dynamic performance and device longevity, such as long settling time, dynamic pull-in, and contact fatigue. By suppressing this undesirable effect, it is expected that both the dynamic performance and device reliability can be effectively enhanced. This paper presents a command-shaping-based scheme with experiment validation for both fast positioning and reduced contact impact of MEMS devices by the suppression of motion-induced vibrations. The scheme was developed by applying energy conservation, force equilibrium, and elliptical integrals. Simulink simulations indicate that both the impact force and settling time can be effectively reduced. In order to count the possible parameter variation and unmodeled dynamics, an online tuning scheme is also proposed and verified through simulation. Finally, spring-plate specimens fabricated using SU-8 with a metallic coating and a test bed containing a laser positioning sensor and a high voltage source are designed to further demonstrate the performance of the proposed scheme; the test results indicate that the proposed approach can effectively enhance the dynamic performance of MEMS devices such as grating light valves and RF switches.
AB - Electrostatic (ES) force is one of the most important actuation mechanisms for microelectromechanical systems (MEMS) devices. However, residual vibration of microstructures induced by ES actuation can bring various problems that degrade dynamic performance and device longevity, such as long settling time, dynamic pull-in, and contact fatigue. By suppressing this undesirable effect, it is expected that both the dynamic performance and device reliability can be effectively enhanced. This paper presents a command-shaping-based scheme with experiment validation for both fast positioning and reduced contact impact of MEMS devices by the suppression of motion-induced vibrations. The scheme was developed by applying energy conservation, force equilibrium, and elliptical integrals. Simulink simulations indicate that both the impact force and settling time can be effectively reduced. In order to count the possible parameter variation and unmodeled dynamics, an online tuning scheme is also proposed and verified through simulation. Finally, spring-plate specimens fabricated using SU-8 with a metallic coating and a test bed containing a laser positioning sensor and a high voltage source are designed to further demonstrate the performance of the proposed scheme; the test results indicate that the proposed approach can effectively enhance the dynamic performance of MEMS devices such as grating light valves and RF switches.
UR - http://www.scopus.com/inward/record.url?scp=79551608494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551608494&partnerID=8YFLogxK
U2 - 10.1109/JMEMS.2010.2100023
DO - 10.1109/JMEMS.2010.2100023
M3 - Article
AN - SCOPUS:79551608494
SN - 1057-7157
VL - 20
SP - 128
EP - 139
JO - Journal of Microelectromechanical Systems
JF - Journal of Microelectromechanical Systems
IS - 1
M1 - 5682000
ER -