Federal funds rate prediction using robust radial basis function neural networks

Chun Li Tsai, Chien Cheng Lee, Yu Chun Chiang

研究成果: Conference contribution

摘要

Since some studies have found that monetary policy influences the financial market, the prediction of effective federal funds rate has been an important issue. In this paper, we construct the M-estimator based robust RBF (MRRBF) neural network and compare the forecasting performances with some other time-series forecasting models for daily U.S effective federal funds rate. We find that the proposed MRRBF network can produce the lowest root mean square errors due to the ability to eliminate the outlier influence.

原文English
主出版物標題Second International Conference on Innovative Computing, Information and Control, ICICIC 2007
發行者IEEE Computer Society
ISBN(列印)0769528821, 9780769528823
DOIs
出版狀態Published - 2007 1月 1
事件2nd International Conference on Innovative Computing, Information and Control, ICICIC 2007 - Kumamoto, Japan
持續時間: 2007 9月 52007 9月 7

出版系列

名字Second International Conference on Innovative Computing, Information and Control, ICICIC 2007

Other

Other2nd International Conference on Innovative Computing, Information and Control, ICICIC 2007
國家/地區Japan
城市Kumamoto
期間07-09-0507-09-07

All Science Journal Classification (ASJC) codes

  • 電腦科學(全部)
  • 機械工業

指紋

深入研究「Federal funds rate prediction using robust radial basis function neural networks」主題。共同形成了獨特的指紋。

引用此