First principles modelling of the ion binding capacity of finger millet

Wei Cong Matthew Yong, Apramita Devi, Tsair Fuh Lin, Helen F. Chappell

研究成果: Article同行評審

摘要

Finger millet, a cereal grain widely consumed in India and Africa, has gained more attention in recent years due to its high dietary fibre (arabinoxylan) and trace mineral content, and its climate resilience. The aim of this study was to understand the interactions between potassium (K+), calcium (Ca2+) and zinc (Zn2+) ions and the arabinoxylan structure and determine its ion-binding capacity. Three variations of a proposed model of the arabinoxylan structure were constructed and first principles Density Functional Theory calculations were carried out to determine the cation-binding capacity of the arabinoxylan complexes. Zn2+-arabinoxylan complexes were highly unstable and thermodynamically unfavourable in all three models. Ca2+ and K+ ions, however, form thermodynamically stable complexes, particularly involving two glucuronic acid residues as a binding pocket. Glucuronic acid residues are found to play a key role in stabilising the cation-arabinoxylan complex, and steric effects are more important to the stability than charge density. Our results highlight the most important structural features of the millet fibre regarding ion-storage capacity, and provide valuable preliminary data for confirmatory experimental studies and for the planning of clinical trials where the bioavailability of bound ions following digestion may be tested.

原文English
文章編號28
期刊npj Science of Food
8
發行號1
DOIs
出版狀態Published - 2024 12月

All Science Journal Classification (ASJC) codes

  • 食品科學
  • 公共衛生、環境和職業健康

指紋

深入研究「First principles modelling of the ion binding capacity of finger millet」主題。共同形成了獨特的指紋。

引用此