Flame structure of metal particle in methane-air combustion

Stalline Pangestu, Sareddy Kullai Reddy, Yueh Heng Li

研究成果: Paper同行評審


Metal particle is one of the most promising alternatives material to fossil fuel for future fuels since some particles have high energy densities and it is possible to recycle the particle. Fossil fuels are convenient but it produces carbon emission and cause the increase of greenhouse gas emission in atmosphere. Recently, there has been growing interest in exploring the potential of metal powders utilization in heat and power generation system due to recyclability and zero carbon emission. Compare to fossil fuel combustion, the product of metal particle combustion is solid, and it is possible to capture the product and reform back to original metal by using electrolysis process powered by renewable energy. Alternatively, it is regarded as one of energy storage fashions. In this research, the air and methane premixed mixture entered the co-axial burner and seeded with micron sized atomized iron particle (diameter= 2-10 ?m). Metal particle seeded to the system using syringe with a vibration motor attached on its syringe tube. The equivalent ratio for methane and air was 1 (stoichiometric) and variation of metal particle concentration was being conducted. The objectives of this research are to analyze the physical and chemical properties of metal-particle-doped premixed methane air for future clean and recyclable energy.

出版狀態Published - 2019 1月 1
事件12th Asia-Pacific Conference on Combustion, ASPACC 2019 - Fukuoka, Japan
持續時間: 2019 7月 12019 7月 5


Conference12th Asia-Pacific Conference on Combustion, ASPACC 2019

All Science Journal Classification (ASJC) codes

  • 化學工程 (全部)
  • 能源工程與電力技術
  • 燃料技術
  • 凝聚態物理學


深入研究「Flame structure of metal particle in methane-air combustion」主題。共同形成了獨特的指紋。