Flow field simulation and pressure drop modeling by a porous medium in PEM fuel cells

Wei Hsin Chen, Zong Lin Tsai, Min Hsing Chang, Tzu Hsuan Hsu, Pei Chi Kuo

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

For proton-exchange membrane fuel cells, the distribution of reactant flow in the stack is critical to the fuel cell's efficiency. The uneven distribution of reactant flow in the stack may cause poor current density, low performance, and material degradation. To understand and accurately predict the flow field in the proton-exchange membrane fuel cell system, the present study aims to develop a simple correlation to analyze the pressure drop in fuel cell stacks. The flow channel in each cell of a stack is treated as a porous medium, and a power-law model is used to approximate the porous medium momentum source term. For the stacks with fewer cell numbers, namely, 1, 5, and 10 cells, the parameters in the power law are established based on the experimental data. Then, a correlation is developed to simulate the flow and predict the pressure drop in the stack with higher cell numbers (ie, 20 and 40 cells). The simulations show that the pressure drop in each cell of a stack is almost invariable, and the average pressure drop decreases with increasing the number of cells. The flow uniformity in the stacks with different cell numbers is evaluated using the dimensionless pressure drop and the pressure drop ratios. It suggests that the lower the cell number, the more uniform the pressure drop. The developed model is conducive to efficiently designing the flow channel for a fuel cell stack with large cell numbers.

原文English
頁(從 - 到)163-177
頁數15
期刊International Journal of Energy Research
46
發行號1
DOIs
出版狀態Published - 2022 1月

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 核能與工程
  • 燃料技術
  • 能源工程與電力技術

指紋

深入研究「Flow field simulation and pressure drop modeling by a porous medium in PEM fuel cells」主題。共同形成了獨特的指紋。

引用此