Fluorinated h-BN As a magnetic semiconductor

Sruthi Radhakrishnan, Deya Das, Atanu Samanta, Carlos A. De Los Reyes, Liangzi Deng, Lawrence B. Alemany, Thomas K. Weldeghiorghis, Valery N. Khabashesku, Vidya Kochat, Zehua Jin, Parambath M. Sudeep, Angel A. Martí, Ching Wu Chu, Ajit Roy, Chandra Sekhar Tiwary, Abhishek K. Singh, Pulickel M. Ajayan

研究成果: Article同行評審

113 引文 斯高帕斯(Scopus)


We report the fluorination of electrically insulating hexagonal boron nitride (h-BN) and the subsequent modification of its electronic band structure to a wide bandgap semiconductor via introduction of defect levels. The electrophilic nature of fluorine causes changes in the charge distribution around neighboring nitrogen atoms in h-BN, leading to room temperature weak ferromagnetism. The observations are further supported by theoretical calculations considering various possible configurations of fluorinated h-BN structure and their energy states. This unconventional magnetic semiconductor material could spur studies of stable two-dimensional magnetic semiconductors. Although the high thermal and chemical stability of h-BN have found a variety of uses, this chemical functionalization approach expands its functionality to electronic and magnetic devices.

期刊Science Advances
出版狀態Published - 2017 7月 5

All Science Journal Classification (ASJC) codes

  • 多學科


深入研究「Fluorinated h-BN As a magnetic semiconductor」主題。共同形成了獨特的指紋。