Fractal QRS-complexes pattern recognition for imperative cardiac arrhythmias

Chia Hung Lin, Yi Chun Du

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)

摘要

This paper proposes using fractal QRS-complexes pattern recognition for imperative cardiac arrhythmias. A typical electrocardiogram (ECG) signal is comprised of P-wave, QRS-complex, and T-wave. Fractal dimension transformation (FDT) is employed to adjoin the QRS-complex from time-domain ECG signals, including the fractal features of supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. FDT with fractal dimension (FD) is addressed for constructing various symptomatic features, and can produce family functions and enhance features, making the difference between healthy and unhealthy subjects more significant. The probabilistic neural network (PNN) is proposed for recognizing the states of cardiac physiologic function. The proposed method is tested using the MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) arrhythmia database. Compared with other methods, the numerical experiments demonstrate greater efficiency and higher accuracy in recognizing ECG signals.

原文English
頁(從 - 到)1274-1285
頁數12
期刊Digital Signal Processing: A Review Journal
20
發行號4
DOIs
出版狀態Published - 2010 7月

All Science Journal Classification (ASJC) codes

  • 訊號處理
  • 電腦視覺和模式識別
  • 統計、概率和不確定性
  • 計算機理論與數學
  • 電氣與電子工程
  • 人工智慧
  • 應用數學

指紋

深入研究「Fractal QRS-complexes pattern recognition for imperative cardiac arrhythmias」主題。共同形成了獨特的指紋。

引用此