Fraudulent User Detection with Time-enhanced Graph Neural Networks on E-Commerce Platforms

Yen Wen Lu, Cheng Te Li

研究成果: Conference contribution

1 引文 斯高帕斯(Scopus)

摘要

In this paper, we propose a Graph Neural Network-based model to detect fraudulent users on e-commerce platforms without relying on rating scores. Utilizing user-product bipartite graphs and timestamp data, we capture temporal patterns and neighborhood information, creating a graph with multidimensional edge vectors. Our model demonstrates competitive performance compared to state-of-the-art methods, effectively identifying fraudulent users under data-insufficient conditions and enhancing the overall reliability of online platforms.

原文English
主出版物標題2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面49-50
頁數2
ISBN(電子)9798350324174
DOIs
出版狀態Published - 2023
事件2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Pingtung, Taiwan
持續時間: 2023 7月 172023 7月 19

出版系列

名字2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings

Conference

Conference2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023
國家/地區Taiwan
城市Pingtung
期間23-07-1723-07-19

All Science Journal Classification (ASJC) codes

  • 人工智慧
  • 人機介面
  • 資訊系統
  • 資訊系統與管理
  • 電氣與電子工程
  • 媒體技術
  • 儀器

指紋

深入研究「Fraudulent User Detection with Time-enhanced Graph Neural Networks on E-Commerce Platforms」主題。共同形成了獨特的指紋。

引用此