Functional joint mechanisms with constant-torque outputs

Chia Wen Hou, Chao Chieh Lan

研究成果: Article同行評審

54 引文 斯高帕斯(Scopus)


This paper presents a type of functional joint mechanism with constant-torque outputs. Unlike torsional springs, whose torque increases as rotation increases, a constant-torque joint mechanism (CTJM) provides a nearly constant torque over a specific rotation interval. Instead of using sensorized control, CTJMs passively maintain a constant torque. Potential applications include dynamic and static balancing of machines, human joint rehabilitative devices, and human mobility-assisting devices. To meet practical needs, a CTJM should have a large constant-torque region with sufficient flatness. We propose lumped-compliance models and distributed-compliance models for designing a CTJM. For both models, design formulations are given, with results discussed and compared. The prototypes are fabricated based on the distributed-compliance models and are verified by comparing with finite element methods. Effects of modeling, dimension, and material variations on CTJMs are investigated. Guidelines are given for designing CTJMs of various sizes and torque magnitude. Experiments study the torque-to-rotation curves of using different materials. Their resistances to hysteresis and stress relaxation are compared.

頁(從 - 到)166-181
期刊Mechanism and Machine Theory
出版狀態Published - 2013

All Science Journal Classification (ASJC) codes

  • 生物工程
  • 材料力學
  • 機械工業
  • 電腦科學應用


深入研究「Functional joint mechanisms with constant-torque outputs」主題。共同形成了獨特的指紋。