Functional p-Type, Polymerized Organic Electrode Interlayer in CH3NH3PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells

Tsung Yu Chiang, Gang Lun Fan, Jun Yuan Jeng, Kuo Cheng Chen, Chao-Yu Chen, Ten-Chin Wen, Tzung-Fang Guo, Ken Tsung Wong

研究成果: Article同行評審

35 引文 斯高帕斯(Scopus)

摘要

Thermal curing of the styrene-functionalized 9,9-diarylfluorene-based triaryldiamine monomer (VB-DAAF) forms an ideal p-type organic electrode interlayer capable of resisting solvation of the polar precursor solution in fabricating methylammonium lead iodide (CH3NH3PbI3) perovskite/fullerene (C60) planar heterojunction hybrid solar cells. The polymerized VB-DAAF film exhibits a good energy level alignment with the valence-band-edge level of the CH3NH3PbI3 perovskite to facilitate the transport of holes. The large energy barrier to the conduction-band-edge level of the CH3NH3PbI3 perovskite effectively blocks electrons from reaching the positive electrode and reduces the photon energy loss due to recombination. The best-performing cell with the configuration of glass/indium-tin oxide/polymerized VB-DAAF/CH3NH3PbI3 perovskite/C60/bathocuproine/aluminum is free of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer to achieve an open-circuit voltage (VOC) = 1.02 V, a short-circuit current (JSC) = 18.92 mA/cm2, and a fill factor (FF) = 0.78, corresponding to a power conversion efficiency (PCE) of 15.17% under standard 1 sun AM 1.5G simulated solar irradiation. The performance is much superior to the device applying the PEDOT:PSS interlayer with photovoltaic parameters of VOC = 0.85 V, JSC = 16.37 mA/cm2, and FF = 0.74, corresponding to a PCE of 10.27%. Additionally, we had applied a UV-assisted process to polymerize the VB-DAAF film at relatively lower temperature and fabricate decent perovskite-based solar cells on the flexible substrate for real applications.

原文English
頁(從 - 到)24973-24981
頁數9
期刊ACS Applied Materials and Interfaces
7
發行號44
DOIs
出版狀態Published - 2015 11月 11

All Science Journal Classification (ASJC) codes

  • 一般材料科學

指紋

深入研究「Functional p-Type, Polymerized Organic Electrode Interlayer in CH3NH3PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells」主題。共同形成了獨特的指紋。

引用此