TY - JOUR
T1 - Functionalized mesoporous carbons as platinum electrocatalyst supports for applications in fuel cells
AU - Liu, Shou Heng
AU - Wu, Jyun Ren
PY - 2012
Y1 - 2012
N2 - Mesoporous carbons (MCs) were synthesized by an organic-organic self-assembly process and surface-modified by the conventional acid-oxidation, H2O2 oxidation and 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEPTMS) grafted methods. Fabrication of Pt nanoparticles (NPs) supported on MC (Pt/MC) and modified MC (Pt/MC-HNO3, Pt/MC-H2O2 and Pt/MC-AEPTMS) were further performed. These resultant catalysts were characterized by a variety of different spectroscopic and analytical techniques such as Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis. Pt NPs were found to be aggregated on the Pt/MC-HNO3 catalysts. For Pt/MC-AEPTMS catalysts, Pt NPs (ca. 2 nm) supported uniformly on surface of modified MC which however has a low electrical conductivity. Among three surface-modified methods, the H2O2 treatment method was a simply controllable way for surface modification of MC which possesses desirable electrical conductivity, well-dispersed and nanosized Pt (ca. 3 nm). The Pt/MC-H2O2 samples were found to have superior electrocatalytic activity for oxygen reduction reaction in comparison with synthesized Pt/MC, Pt/MC-HNO3, Pt/MC-AEPTMS and the typical commercial electrocatalyst (Pt/XC-72).
AB - Mesoporous carbons (MCs) were synthesized by an organic-organic self-assembly process and surface-modified by the conventional acid-oxidation, H2O2 oxidation and 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEPTMS) grafted methods. Fabrication of Pt nanoparticles (NPs) supported on MC (Pt/MC) and modified MC (Pt/MC-HNO3, Pt/MC-H2O2 and Pt/MC-AEPTMS) were further performed. These resultant catalysts were characterized by a variety of different spectroscopic and analytical techniques such as Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis. Pt NPs were found to be aggregated on the Pt/MC-HNO3 catalysts. For Pt/MC-AEPTMS catalysts, Pt NPs (ca. 2 nm) supported uniformly on surface of modified MC which however has a low electrical conductivity. Among three surface-modified methods, the H2O2 treatment method was a simply controllable way for surface modification of MC which possesses desirable electrical conductivity, well-dispersed and nanosized Pt (ca. 3 nm). The Pt/MC-H2O2 samples were found to have superior electrocatalytic activity for oxygen reduction reaction in comparison with synthesized Pt/MC, Pt/MC-HNO3, Pt/MC-AEPTMS and the typical commercial electrocatalyst (Pt/XC-72).
UR - http://www.scopus.com/inward/record.url?scp=84872872249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872872249&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:84872872249
SN - 1452-3981
VL - 7
SP - 8326
EP - 8336
JO - International Journal of Electrochemical Science
JF - International Journal of Electrochemical Science
IS - 9
ER -