Fuzzy regression analysis by support vector learning approach

Pei Yi Hao, Jung Hsien Chiang

研究成果: Article同行評審

96 引文 斯高帕斯(Scopus)


Support vector machines (SVMs) have been very successful in pattern classification and function approximation problems for crisp data. In this paper, we incorporate the concept of fuzzy set theory into the support vector regression machine. The parameters to be estimated in the SVM regression, such as the components within the weight vector and the bias term, are set to be the fuzzy numbers. This integration preserves the benefits of SVM regression model and fuzzy regression model and has been attempted to treat fuzzy nonlinear regression analysis. In contrast to previous fuzzy nonlinear regression models, the proposed algorithm is a model-free method in the sense that we do not have to assume the underlying model function. By using different kernel functions, we can construct different learning machines with arbitrary types of nonlinear regression functions. Moreover, the proposed method can achieve automatic accuracy control in the fuzzy regression analysis task. The upper bound on number of errors is controlled by the user-predefined parameters. Experimental results are then presented that indicate the performance of the proposed approach.

頁(從 - 到)428-441
期刊IEEE Transactions on Fuzzy Systems
出版狀態Published - 2008 4月

All Science Journal Classification (ASJC) codes

  • 控制與系統工程
  • 計算機理論與數學
  • 人工智慧
  • 應用數學


深入研究「Fuzzy regression analysis by support vector learning approach」主題。共同形成了獨特的指紋。