TY - JOUR
T1 - GaOOH, and β- And γ-Ga2O3 nanowires
T2 - Preparation and photoluminescence
AU - Huang, Chih Chia
AU - Yeh, Chen Sheng
PY - 2010/1
Y1 - 2010/1
N2 - A composite methodology using laser ablation followed by a solution refluxing process was demonstrated to prepare GaOOH and (β-, γ-) Ga2O3 nanowires, where GaOOH and γ-Ga 2O3 nanowires were prepared for the first time. The CTAB surfactant and PVP polymer facilitated the nucleation and growth of GaOOH nanorods, and played different roles in selectively controlling the growth rates of different facets. In the PVA/CTAB-assisted reaction, a high aspect ratio (of at least 200) of GaOOH nanowires was approached. The calcination of GaOOH nanowires at a temperature of 500 °C (6 h) transformed them into γ-Ga2O3 nanowires and converted them further into β-Ga2O3 nanowires at 750 °C (18 h). Photoluminescence measurements were conducted at room temperature for the GaOOH and (β-, γ-) Ga2O3 nanowires using a high resolution synchrotron X-ray source. The blue emissions from the GaOOH and (β-, γ-) Ga2O3 nanowires were resolved into a few sharp peaks, and may provide a valuable reference for further understanding the PL mechanisms. Although luminescence spectra of the GaOOH and γ-Ga2O3 nanowires were recorded for the first time, the similar optical band gap and emission contour observed for β-Ga 2O3 nanowires suggests that the optical behavior of GaOOH and γ-Ga2O3 nanowires are likely to closely follow the PL mechanisms of β-Ga2O3 nanowires.
AB - A composite methodology using laser ablation followed by a solution refluxing process was demonstrated to prepare GaOOH and (β-, γ-) Ga2O3 nanowires, where GaOOH and γ-Ga 2O3 nanowires were prepared for the first time. The CTAB surfactant and PVP polymer facilitated the nucleation and growth of GaOOH nanorods, and played different roles in selectively controlling the growth rates of different facets. In the PVA/CTAB-assisted reaction, a high aspect ratio (of at least 200) of GaOOH nanowires was approached. The calcination of GaOOH nanowires at a temperature of 500 °C (6 h) transformed them into γ-Ga2O3 nanowires and converted them further into β-Ga2O3 nanowires at 750 °C (18 h). Photoluminescence measurements were conducted at room temperature for the GaOOH and (β-, γ-) Ga2O3 nanowires using a high resolution synchrotron X-ray source. The blue emissions from the GaOOH and (β-, γ-) Ga2O3 nanowires were resolved into a few sharp peaks, and may provide a valuable reference for further understanding the PL mechanisms. Although luminescence spectra of the GaOOH and γ-Ga2O3 nanowires were recorded for the first time, the similar optical band gap and emission contour observed for β-Ga 2O3 nanowires suggests that the optical behavior of GaOOH and γ-Ga2O3 nanowires are likely to closely follow the PL mechanisms of β-Ga2O3 nanowires.
UR - http://www.scopus.com/inward/record.url?scp=77956314066&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956314066&partnerID=8YFLogxK
U2 - 10.1039/b9nj00392d
DO - 10.1039/b9nj00392d
M3 - Article
AN - SCOPUS:77956314066
VL - 34
SP - 103
EP - 107
JO - New Journal of Chemistry
JF - New Journal of Chemistry
SN - 1144-0546
IS - 1
ER -