GaOOH, and β- And γ-Ga2O3 nanowires: Preparation and photoluminescence

研究成果: Article同行評審

53 引文 斯高帕斯(Scopus)


A composite methodology using laser ablation followed by a solution refluxing process was demonstrated to prepare GaOOH and (β-, γ-) Ga2O3 nanowires, where GaOOH and γ-Ga 2O3 nanowires were prepared for the first time. The CTAB surfactant and PVP polymer facilitated the nucleation and growth of GaOOH nanorods, and played different roles in selectively controlling the growth rates of different facets. In the PVA/CTAB-assisted reaction, a high aspect ratio (of at least 200) of GaOOH nanowires was approached. The calcination of GaOOH nanowires at a temperature of 500 °C (6 h) transformed them into γ-Ga2O3 nanowires and converted them further into β-Ga2O3 nanowires at 750 °C (18 h). Photoluminescence measurements were conducted at room temperature for the GaOOH and (β-, γ-) Ga2O3 nanowires using a high resolution synchrotron X-ray source. The blue emissions from the GaOOH and (β-, γ-) Ga2O3 nanowires were resolved into a few sharp peaks, and may provide a valuable reference for further understanding the PL mechanisms. Although luminescence spectra of the GaOOH and γ-Ga2O3 nanowires were recorded for the first time, the similar optical band gap and emission contour observed for β-Ga 2O3 nanowires suggests that the optical behavior of GaOOH and γ-Ga2O3 nanowires are likely to closely follow the PL mechanisms of β-Ga2O3 nanowires.

頁(從 - 到)103-107
期刊New Journal of Chemistry
出版狀態Published - 2010 1月

All Science Journal Classification (ASJC) codes

  • 催化
  • 化學 (全部)
  • 材料化學


深入研究「GaOOH, and β- And γ-Ga2O3 nanowires: Preparation and photoluminescence」主題。共同形成了獨特的指紋。