Gaudin Hamiltonians on unitarizable modules over classical Lie (super)algebras

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

Let M be a tensor product of unitarizable irreducible highest weight modules over the Lie (super)algebra G, where G is gl(m|n), osp(2m|2n) or spo(2m|2n). We show, using super duality, that the singular eigenvectors of the (super) Gaudin Hamiltonians for G on M can be obtained from the singular eigenvectors of the Gaudin Hamiltonians for the corresponding Lie algebras on some tensor products of finite-dimensional irreducible modules. As a consequence, the (super) Gaudin Hamiltonians for G are diagonalizable on the space spanned by singular vectors of M and hence on M. In particular, we establish the diagonalization of the Gaudin Hamiltonians, associated to any of the orthogonal Lie algebra so(2n) and the symplectic Lie algebra sp(2n), on the tensor product of infinite-dimensional unitarizable irreducible highest weight modules.

原文English
頁(從 - 到)400-431
頁數32
期刊Journal of Algebra
642
DOIs
出版狀態Published - 2024 3月 15

All Science Journal Classification (ASJC) codes

  • 代數與數理論

指紋

深入研究「Gaudin Hamiltonians on unitarizable modules over classical Lie (super)algebras」主題。共同形成了獨特的指紋。

引用此