Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet

Jia Xin Yin, Songtian S. Zhang, Hang Li, Kun Jiang, Guoqing Chang, Bingjing Zhang, Biao Lian, Cheng Xiang, Ilya Belopolski, Hao Zheng, Tyler A. Cochran, Su Yang Xu, Guang Bian, Kai Liu, Tay Rong Chang, Hsin Lin, Zhong Yi Lu, Ziqiang Wang, Shuang Jia, Wenhong WangM. Zahid Hasan

研究成果: Article同行評審

294 引文 斯高帕斯(Scopus)

摘要

Owing to the unusual geometry of kagome lattices—lattices made of corner-sharing triangles—their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states1–9. In the presence of strong spin–orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin–orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin–orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity—a clear indication of electron correlation—and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin–orbit properties and exploring emergent phenomena in topological or quantum materials10–12.

原文English
頁(從 - 到)91-95
頁數5
期刊Nature
562
發行號7725
DOIs
出版狀態Published - 2018 10月 4

All Science Journal Classification (ASJC) codes

  • 多學科

指紋

深入研究「Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet」主題。共同形成了獨特的指紋。

引用此