摘要
Copper nanowire networks (NWs) coated with a graphene layer through a carbon-enclosed chemical vapor deposition technique at a low temperature of 400 °C with a low sheet resistance of 23.2 Ω sq-1 and a high transmittance of 83.4%, which is comparable to the typical values of tin-doped indium oxide (ITO), as a transparent conducting electrode were demonstrated. The graphene-coated copper NW networks retain a low sheet resistance of less than 25 Ω sq-1 even after annealing at a temperature of 240 °C in a pure oxygen environment for 1 h, while a sheet resistance less than 100 Ω sq-1 can still be maintained in natural sea water, and acidic and basic solutions. Their highly stable features in harsh environments make these graphene-coated copper nanowire networks suitable as a catalyst toward high-efficiency hydrogen evolution reactions (HERs) with a low overpotential of 252 mV at 10 mA Cm-2 and a low Tafel slope of 67 mV dec-1. The non-corrosive and anti-oxidant graphene-coated copper nanowire networks could be used as an alternative transparent conducting electrode in harsh environments, such as in tandem photocatalytic water splitting.
原文 | English |
---|---|
頁(從 - 到) | 13320-13328 |
頁數 | 9 |
期刊 | Journal of Materials Chemistry A |
卷 | 5 |
發行號 | 26 |
DOIs | |
出版狀態 | Published - 2017 |
All Science Journal Classification (ASJC) codes
- 一般化學
- 可再生能源、永續發展與環境
- 一般材料科學