Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation

Kuan Ting Lee, Jyun Ting Du, Wei Hsin Chen, Aristotle T. Ubando, Keat Teong Lee

研究成果: Article同行評審

24 引文 斯高帕斯(Scopus)

摘要

A green approach using hydrogen peroxide (H2O2) to intensify the fuel properties of spent coffee grounds (SCGs) through torrefaction is developed in this study to minimize environmental pollution. Meanwhile, a neural network (NN) is used to minimize bulk density at different combinations of operating conditions to show the accurate and reliable model of NN (R2 = 0.9994). The biochar produced from SCGs torrefied at temperatures of 200–300 °C, duration of 30–60 min, and H2O2 concentrations of 0–100 wt% is examined. The results reveal that the higher heating value (HHV) of biochar increases with rising temperature, duration, or H2O2 concentration, whereas the bulk density has an opposite trend. The HHV, ignition temperature, and bulk density of biochar from torrefaction at 230 °C for 30 min with a 100 wt% H2O2 solution (230-100%-TSCG) are 27.00 MJ∙kg−1, 292 °C, and 120 kg∙m−3, respectively. This HHV accounts for a 29% improvement compared to that of untorrefied SCG. The contact angle (126°), water activity (0.51 aw), and moisture content (7.69%) of the optimized biochar indicate that it has higher resistance against biodegradation, and thereby can be stored longer. Overall, H2O2 is a green treatment additive for SCGs solid fuel. This study has successfully produced biochar with greater HHV and low bulk density at low temperatures. The green additive development can effectively reduce environmental pollutants and upgrade wastes into resources, and achieve “3E”, namely, environmental (non-polluting green additives), energy (biofuel), and circular economy (waste upgrade). In addition, the produced biochar has great potential in the fields of bioadsorbents and soil amendments.

原文English
文章編號117244
期刊Environmental Pollution
285
DOIs
出版狀態Published - 2021 9月 15

All Science Journal Classification (ASJC) codes

  • 毒理學
  • 污染
  • 健康、毒理學和誘變

指紋

深入研究「Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation」主題。共同形成了獨特的指紋。

引用此