TY - JOUR
T1 - Gypenosides induce apoptosis in human hepatoma Huh-7 cells through a calcium/reactive oxygen species-dependent mitochondrial pathway
AU - Wang, Qwa Fun
AU - Chiang, Chi Wu
AU - Wu, Chun Chi
AU - Cheng, Chi Chih
AU - Hsieh, Shur Jong
AU - Chen, Jung Chou
AU - Hsieh, Yun Chih
AU - Hsu, Shih Lan
PY - 2007/1/1
Y1 - 2007/1/1
N2 - We have previously reported that gypenosides induce apoptosis in human hepatocarcinoma Huh-7 cells through a mitochondria-dependent caspase-9 activation cascade. In order to further explore the critical events leading to apoptosis in gypenosides-treated cells, the following effects of gypenosides on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MPT), and the subcellular distribution of Bcl-2 and Bax. We show that gypenosides-induced apoptosis was accompanied by the generation of intracellular ROS, disruption of MPT, and inactivation of ERK, as well as an increase in mitochondrial Bax and a decrease of mitochondrial Bcl-2 levels. Ectopic expression of Bcl-2 or treatment with furosemide attenuated gypenosides-triggered apoptosis. Treatment with ATA caused a drastic prevention of apoptosis and the gypenosides-mediated mitochondrial Bcl-2 decrease and Bax increase, but failed to inhibit ROS generation and MPT dysfunction. Incubation with antioxidants significantly inhibited gypenosides-mediated ROS generation, ERK inactivation, MPT and apoptosis. Moreover, an increase of the intracellular calcium ion (Ca2+) concentration rapidly occurred in gypenosides-treated Huh-7 cells. Buffering of the intracellular Ca2+increase with a Ca2+chelator BAMTA/AM blocked the gypenosides-elicited ERK inactivation, ROS generation, Bcl-2/Bax redistribution, mitochondrial dysfunction, and apoptosis. Based on these results, we propose that the rise in intracellular Ca2+concentration plays a pivotal role in the initiation of gypenosides-triggered apoptotic death.
AB - We have previously reported that gypenosides induce apoptosis in human hepatocarcinoma Huh-7 cells through a mitochondria-dependent caspase-9 activation cascade. In order to further explore the critical events leading to apoptosis in gypenosides-treated cells, the following effects of gypenosides on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MPT), and the subcellular distribution of Bcl-2 and Bax. We show that gypenosides-induced apoptosis was accompanied by the generation of intracellular ROS, disruption of MPT, and inactivation of ERK, as well as an increase in mitochondrial Bax and a decrease of mitochondrial Bcl-2 levels. Ectopic expression of Bcl-2 or treatment with furosemide attenuated gypenosides-triggered apoptosis. Treatment with ATA caused a drastic prevention of apoptosis and the gypenosides-mediated mitochondrial Bcl-2 decrease and Bax increase, but failed to inhibit ROS generation and MPT dysfunction. Incubation with antioxidants significantly inhibited gypenosides-mediated ROS generation, ERK inactivation, MPT and apoptosis. Moreover, an increase of the intracellular calcium ion (Ca2+) concentration rapidly occurred in gypenosides-treated Huh-7 cells. Buffering of the intracellular Ca2+increase with a Ca2+chelator BAMTA/AM blocked the gypenosides-elicited ERK inactivation, ROS generation, Bcl-2/Bax redistribution, mitochondrial dysfunction, and apoptosis. Based on these results, we propose that the rise in intracellular Ca2+concentration plays a pivotal role in the initiation of gypenosides-triggered apoptotic death.
UR - http://www.scopus.com/inward/record.url?scp=34250846038&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250846038&partnerID=8YFLogxK
U2 - 10.1055/s-2007-967200
DO - 10.1055/s-2007-967200
M3 - Article
C2 - 17520521
AN - SCOPUS:34250846038
SN - 0032-0943
VL - 73
SP - 535
EP - 544
JO - Planta Medica
JF - Planta Medica
IS - 6
ER -