Hamiltonian walks on the Sierpinski gasket

Shu Chiuan Chang, Lung Chi Chen

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)

摘要

We derive the exact number of Hamiltonian walks H(n) on the two-dimensional Sierpinski gasket SG(n) at stage n, whose asymptotic behavior is given by. We also obtain the number of Hamiltonian walks with one end at a specific outmost vertex of SG(n), with asymptotic behavior. The distribution of Hamiltonian walks on SG(n) with one end at a specific outmost vertex and the other at an arbitrary vertex of SG(n) is investigated. We rigorously prove that the exponent for the mean l displacement between the two end vertices of such Hamiltonian walks on SG(n) is l ln 2/ln 3 for l > 0.

原文English
文章編號023301
期刊Journal of Mathematical Physics
52
發行號2
DOIs
出版狀態Published - 2011 2月 3

All Science Journal Classification (ASJC) codes

  • 統計與非線性物理學
  • 數學物理學

指紋

深入研究「Hamiltonian walks on the Sierpinski gasket」主題。共同形成了獨特的指紋。

引用此