High fat diet suppresses peroxisome proliferator-activated receptors and reduces dopaminergic neurons in the substantia nigra

Yu Chia Kao, Wei Yen Wei, Kuen Jer Tsai, Liang Chao Wang

研究成果: Article同行評審

30 引文 斯高帕斯(Scopus)

摘要

Although several epidemiologic and animal studies have revealed correlations between obesity and neurodegenerative disorders, such as Parkinson disease (PD), the underlying pathological mechanisms of obesity-induced PD remain unclear. Our study aimed to assess the effect of diet-induced obesity on the brain dopaminergic pathway. For five months, starting from weaning, we gave C57BL/6 mice a high-fat diet (HFD) to generate an obese mouse model and investigate whether the diet reprogrammed the midbrain dopaminergic system. Tyrosine hydroxylase staining showed that the HFD resulted in fewer dopaminergic neurons in the substantia nigra (SN), but not the striatum. It also induced neuroinflammation, with increased astrogliosis in the SN and striatum. Dendritic spine density in the SN of HFD-exposed mice decreased, which suggested that prolonged HFD altered dopaminergic neuroplasticity. All three peroxisome proliferator-activated receptor (PPAR) subtype (PPAR-α, PPAR-β/δ, PPAR-γ) levels were significantly reduced in the SN and the ventral tegmental area of HFD mice when compared to those in controls. This study showed that a prolonged HFD induced neuroinflammation, suppressed PPAR levels, caused degeneration of midbrain dopaminergic neurons, and resulted in symptoms reminiscent of human PD. To our knowledge, this is the first study documenting the effects of an HFD on PPARs in dopaminergic neurons.

原文English
文章編號207
期刊International journal of molecular sciences
21
發行號1
DOIs
出版狀態Published - 2020 1月 1

All Science Journal Classification (ASJC) codes

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「High fat diet suppresses peroxisome proliferator-activated receptors and reduces dopaminergic neurons in the substantia nigra」主題。共同形成了獨特的指紋。

引用此