High performance photoelectrodes prepared using Au@P3HT composite nanoparticles for dye-sensitized solar cells

Shanmuganathan Venkatesan, Tsung Yu Chien, Hsisheng Teng, Yuh Lang Lee

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

In this study, gold (Au) and poly(3-hexylthiophene) (P3HT) composite nanoparticles (Au@P3HT) are synthesized and applied to modify the photoelectrodes of dye-sensitized solar cells (DSSCs). The modification is carried out by adsorption of Au@P3HT onto the electrode surface. The experimental results show that the Au@P3HT nanoparticles demonstrate a spherical shape with a mean diameter of 6 nm. The analysis of X-ray photoelectron spectroscopy indicates that the P3HT strongly interact with Au, protecting the Au particles from the corrosion of iodide electrolytes. Scanning electron microscope analysis reveals that the Au@P3HT nanoparticles adsorb strongly and uniformly on the mesoporous TiO2 photoelectrode. The UV–vis absorption spectrum shows that the Au@P3HT-modified photoelectrode can enhance the light absorption in the long wavelength region, attributed to the plasmon resonance effect of Au nanoparticles. It also demonstrates that the modification of Au@P3HT not only improves the incident photon to current conversion efficiency but also increases the recombination resistance at the photoelectrode/electrolyte interface. Therefore, the corresponding cell has higher current density and open-circuit voltage. By way of this method, the DSSC can achieve an energy conversion efficiency of 9.34%. The non-corrosive characteristics of the Au@P3HT-modified electrode against the iodide liquid electrolyte improve the durability of the DSSCs.

原文English
文章編號166822
期刊Journal of Alloys and Compounds
926
DOIs
出版狀態Published - 2022 12月 10

All Science Journal Classification (ASJC) codes

  • 材料力學
  • 機械工業
  • 金屬和合金
  • 材料化學

指紋

深入研究「High performance photoelectrodes prepared using Au@P3HT composite nanoparticles for dye-sensitized solar cells」主題。共同形成了獨特的指紋。

引用此