TY - JOUR
T1 - High rate performance intensified by nanosized LiFePO4 combined with three-dimensional graphene networks
AU - Kuo, Ping Lin
AU - Hsu, Chun Han
AU - Chiang, Huan Te
AU - Hsu, Jung Mu
N1 - Funding Information:
Acknowledgments The authors would like to thank the National Science Council, Taipei, ROC for their generous financial support of this research.
PY - 2013/12
Y1 - 2013/12
N2 - A sample of nanosized LiFePO4/graphene/carbon (NLFP/GC) hybrid material was achieved by homogenously dispersing a lab-fabricated NLFP (<100 nm) preparation inside well-exfoliated graphene, followed by carbon coating on the NLFP to constitute a three-dimensional network. For comparison, the NLFP coated with sucrose (NLFP/C) and the NLFP solely dispersed in graphene (NLFP/G) were prepared and evaluated. For these as-prepared products, the purity of the LFP component was characterized by X-ray diffraction, while the morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanosized and homogeneously dispersed NLFP/C in composite insures high capacities, indicating that can significantly shorten the pathway for lithium ion diffusion. Under different charge/discharge rates, the capacities of NLFP/GC are all higher than those of NLFP, NLFP/C, and NLFP/G. Also, NLFP/GC exhibited the excellent rate performance of 101 mAh g-1 compared to NLFP/C (ca. 0 mAh g-1) and NLFP/G (58 mAh g -1) at 10C. It is clear that the three-dimensional graphene network of NLFP/GC, very efficiently promote the conductivity of the poorly conductive LiFePO4. Also, the graphene skeleton can serve as a solid scaffold to restrain the aggregation of NLFP. The outstanding electrochemical performance of NLFP/GC derives from the nanosized NLFP in combination with the graphene/carbon layer.
AB - A sample of nanosized LiFePO4/graphene/carbon (NLFP/GC) hybrid material was achieved by homogenously dispersing a lab-fabricated NLFP (<100 nm) preparation inside well-exfoliated graphene, followed by carbon coating on the NLFP to constitute a three-dimensional network. For comparison, the NLFP coated with sucrose (NLFP/C) and the NLFP solely dispersed in graphene (NLFP/G) were prepared and evaluated. For these as-prepared products, the purity of the LFP component was characterized by X-ray diffraction, while the morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanosized and homogeneously dispersed NLFP/C in composite insures high capacities, indicating that can significantly shorten the pathway for lithium ion diffusion. Under different charge/discharge rates, the capacities of NLFP/GC are all higher than those of NLFP, NLFP/C, and NLFP/G. Also, NLFP/GC exhibited the excellent rate performance of 101 mAh g-1 compared to NLFP/C (ca. 0 mAh g-1) and NLFP/G (58 mAh g -1) at 10C. It is clear that the three-dimensional graphene network of NLFP/GC, very efficiently promote the conductivity of the poorly conductive LiFePO4. Also, the graphene skeleton can serve as a solid scaffold to restrain the aggregation of NLFP. The outstanding electrochemical performance of NLFP/GC derives from the nanosized NLFP in combination with the graphene/carbon layer.
UR - http://www.scopus.com/inward/record.url?scp=84886832460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886832460&partnerID=8YFLogxK
U2 - 10.1007/s11051-013-1966-x
DO - 10.1007/s11051-013-1966-x
M3 - Article
AN - SCOPUS:84886832460
VL - 15
JO - Journal of Nanoparticle Research
JF - Journal of Nanoparticle Research
SN - 1388-0764
IS - 12
M1 - 1966
ER -