Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes

Jian De Xie, Jagabandhu Patra, Purna Chandra Rath, Weng Jing Liu, Ching Yuan Su, Sheng Wei Lee, Chung Jen Tseng, Yasser Ashraf Gandomi, Jeng Kuei Chang

研究成果: Article同行評審

36 引文 斯高帕斯(Scopus)


Highly concentrated lithium bis(fluorosulfonyl)imide (LiFSI) salt dissolved in carbonate solvent is employed as a high-performance and robust organic electrolyte for Li-ion batteries. The influences of Li salt type, concentration, and solvent type (such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethylene carbonate (EC)) on the electrochemical properties of Li metal and graphite anodes are systematically assessed. A superior electrolyte composition of 5.5 M LiFSI-DMC/EC is achieved, enhancing the anti-flammability, coulombic efficiency, and high rate capability. The optimal efficiency values of Li electrodeposition/stripping utilizing 5.5 M LiFSI-DMC/EC are 97.0% and 94.5% at 0.4 and 6 mA cm−2, respectively. Such an enhanced performance is due to the formation of a three-dimensional ion network, composed of contact ion pairs (CIPs) and ion aggregates (AGGs) in the highly concentrated LiFSI electrolyte, which effectively decreases the number of free solvent molecules and inhibits the formation of undesired dendritic Li structures. Raman spectroscopy is employed to confirm the formation of CIP and AGG compounds within the electrolyte. The electrochemical data of the 5.5 M LiFSI-DMC/EC electrolyte cell demonstrates a remarkable improvement in the specific capacity and rate capability of a graphite anode.

期刊Journal of Power Sources
出版狀態Published - 2020 2月 29

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 能源工程與電力技術
  • 物理與理論化學
  • 電氣與電子工程


深入研究「Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes」主題。共同形成了獨特的指紋。