Highly efficient electrophosphorescent polymer light-emitting devices

Tzung Fang Guo, Shun Chi Chang, Yang Yang, Raymond C. Kwong, Mark E. Thompson

研究成果: Article同行評審

95 引文 斯高帕斯(Scopus)

摘要

We report a high performance polymer electroluminescent device based on a bi-layer structure consisting of a hole transporting layer (poly(vinylcarbazole)) and an electron transporting layer poly(9,9-bis(octyl)-fluorene-2,7-diyl) (BOc-PF) doped with platinum(II)-2,8,12,17-tetraethyl-3,7,13,18-tetramethylporphyrin (PtOX). The devices show red electrophosphorescence with a peak emission at 656 nm and a full width at half maximum of 18 nm, consistent with exclusive emission from the PtOX dopants. BOc-PF emission is not observed at any bias. The required doping levels for these phosphorescence-based polymer light-emitting diodes (PLEDs) are significantly lower than for other reported phosphorescence-based PLEDs or organic light-emitting diodes (OLEDs). A doping level of 1% or more give an LED with exclusive PtOX emission, whereas related PLEDs or OLEDs doped with phosphorescent dopants require doping levels of >5% to achieve exclusive dye dopant emission. The device external efficiency was enhanced from 1% to 2.3% when doped with PtOX. The lower doping level in BOc-PF/PtOX based PLEDs decreases triplet-triplet annihilation in these devices, leading to quantum efficiency that is only weakly dependent on current density. The luminescence transient decay time for this device is ∼500 μs.

原文English
頁(從 - 到)15-20
頁數6
期刊Organic Electronics
1
發行號1
DOIs
出版狀態Published - 2000 12月

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 生物材料
  • 一般化學
  • 凝聚態物理學
  • 材料化學
  • 電氣與電子工程

指紋

深入研究「Highly efficient electrophosphorescent polymer light-emitting devices」主題。共同形成了獨特的指紋。

引用此