Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide

Wei Hsin Chen, Bo Jhih Lin

研究成果: Article

31 引文 斯高帕斯(Scopus)


A method of producing hydrogen and syngas from the interaction of activated carbon, steam and carbon dioxide is conducted in the present study, where the interaction combines the solution loss reaction and steam gasification reaction. Two important parameters of reaction temperature and steam/CO2 molar ratio (i.e. S/C ratio) in the ranges of 850-950°C and 0-1 are taken into account. The experiments indicate that the CO2 conversion from the reaction in the absence of steam is around 50% at 950°C. Increasing S/C ratio increases the H2 yield, but the CO2 conversion decreases, revealing the competing roles played by steam and CO2 with the reaction of activated carbon. With the conditions of S/C=0.5 and 950°C, the CO2 conversion drops to around 30% and the H2 yield is around 0.45mol (mol H2O)-1. Furthermore, from the analyses of SEM and BET, the results indicate that an increase in S/C ratio intensifies the number of pores on the surface of the activated carbon, and its surface area is increased from 833.13m2g-1 in the raw material to 1100-1450m2g-1 in the reacted activated carbon. It follows that the porous structure of the activated carbon has a significant influence on syngas formation. In summary, the novel method simultaneously possesses the merits of low cost of raw material, reusing CO2 and generating hydrogen and syngas.

頁(從 - 到)551-559
期刊Applied Energy
出版狀態Published - 2013 一月

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

指紋 深入研究「Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide」主題。共同形成了獨特的指紋。

  • 引用此