Hypersonic oscillating shock-wave/boundary-layer interaction on a flat plate

Gaetano M.D. Currao, Liam P. McQuellin, Andrew J. Neely, Sudhir L. Gai, Sean O’Byrne, Fabian Zander, David R. Buttsworth, Jack J. McNamara, Ingo Jahn

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

This work discusses the design, measurement, andsimulation of an oscillating shock-wave/boundary-layer interaction on a flat plate atMach 5.8 and Re = 7 × 106 m−1. The shockgenerator is free to pitch and oscillates with a frequency of 42 Hz, resulting in a shock that varies in intensity and impingement point, with a maximum flow-deflection angle of approximately 10 deg. Transition appears to take place downstreamof the separated region for both static (with a fixed flow-deflection angle) and dynamic experiments; however, heat-flux values are typically between laminar and turbulent solutions, thus suggesting that a complete transition to a fully turbulent boundary layer is delayed because of the favorable pressure gradient induced by the impinging expansion wave originating from trailing edge of the shock generator. Peak pressure is typically overpredicted by laminar simulations for large deflection angles. Starting fromthe reattachment point, heat-flux measurements showthat the boundary layer gradually deviates fromthe laminar solution towards a fully turbulent boundary layer. Vortices are observed in the reattachment region, and their distribution is solely a function of the boundary-layer properties at the separation point. Transient effects induced by the shockmotion result in a maximum bubble length variation of 30%. For the static cases, the separated region amplified disturbances with a frequency of approximately 200 Hz. In the dynamic experiment, harmonics induced by the pseudosinusoidal motion of the shock generator were measured everywhere on the plate.

原文English
頁(從 - 到)940-959
頁數20
期刊AIAA journal
59
發行號3
DOIs
出版狀態Published - 2021

All Science Journal Classification (ASJC) codes

  • 航空工程

指紋

深入研究「Hypersonic oscillating shock-wave/boundary-layer interaction on a flat plate」主題。共同形成了獨特的指紋。

引用此