Hyperspectral Classification Using Low Rank and Sparsity Matrices Decomposition

Hongju Cao, Xiaodi Shang, Chunyan Yu, Meiping Song, Chein I. Chang

研究成果: Conference contribution

5 引文 斯高帕斯(Scopus)

摘要

Classification is a major task in hyperspectral image (HSI) processing. This paper develops an approach by taking advantage of low rank matrix derived from the low rank and sparse matrix decomposition (LRSMD) model which decomposes a hyperspectral data matrix X as X = L+S+n where L, S and n are referred to low rank, sparse and noise matrices respectively. The hyperspectral image classification (HSIC) is then performed on the low rank matrix L rather than the original data matrix X where the well-known go decomposition (GoDec) is used to produce such LRSMD model. To determine the two key parameters used in GoDec, the rank of L, m, and the cardinality of the sparse matrix, k the well-known virtual dimensionality (VD) and minimax-singular value decomposition (MX-SVD) methods are used for this purpose. Finally, to demonstrate advantages of using the low rank matrix L, support vector machine (SVM) and an edge-preserving filters (EPF)-based classifiers are implemented to evaluate classification performance.

原文English
主出版物標題2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面477-480
頁數4
ISBN(電子)9781728163741
DOIs
出版狀態Published - 2020 9月 26
事件2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, United States
持續時間: 2020 9月 262020 10月 2

出版系列

名字International Geoscience and Remote Sensing Symposium (IGARSS)

Conference

Conference2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
國家/地區United States
城市Virtual, Waikoloa
期間20-09-2620-10-02

All Science Journal Classification (ASJC) codes

  • 電腦科學應用
  • 一般地球與行星科學

指紋

深入研究「Hyperspectral Classification Using Low Rank and Sparsity Matrices Decomposition」主題。共同形成了獨特的指紋。

引用此