TY - JOUR
T1 - Identical Code Cyclic Shift Multiple Access - A Bridge between CDMA and NOMA
AU - Liu, Xiqing
AU - Chen, Hsiao Hwa
AU - Peng, Mugen
AU - Yang, Feifan
N1 - Publisher Copyright:
© 1967-2012 IEEE.
PY - 2020/3
Y1 - 2020/3
N2 - A traditional direct sequence CDMA (DS-CDMA) system works based on spreading codes, which should have good auto-correlation and cross-correlation properties to eliminate multiple access interference (MAI) and multipath interference (MI). However, to find a large number of good spreading codes is extremely difficult, and thus the capacity of a DS-CDMA system is limited strictly by the number of available spreading codes. This work proposes a downlink DS-CDMA design to enable multiple access using only one spreading code, namely identical code cyclic shift (ICCS) code, where in-phase and quadrature channels are used to transmit data and pilot, respectively. In particular, the ICCS code is used at a transmitter to perform DS modulation for user data, which is then sent to the in-phase channel. At the same time, the pilots are sent over the quadrature channel in a time-division multiplex (TDM) mode to construct a correlation matrix of ICCS code. At a receiver, MAI is removed by so-designed pilots plus a matched filter-bank. Simulation results show that the proposed ICCS multiple access (ICCSMA) can achieve a better performance than a traditional DS-CDMA system in a high signal to noise ratio region. ICCSMA serves as a bridge to turn CDMA to NOMA to enable massive connectivity in 5 G and beyond communications.
AB - A traditional direct sequence CDMA (DS-CDMA) system works based on spreading codes, which should have good auto-correlation and cross-correlation properties to eliminate multiple access interference (MAI) and multipath interference (MI). However, to find a large number of good spreading codes is extremely difficult, and thus the capacity of a DS-CDMA system is limited strictly by the number of available spreading codes. This work proposes a downlink DS-CDMA design to enable multiple access using only one spreading code, namely identical code cyclic shift (ICCS) code, where in-phase and quadrature channels are used to transmit data and pilot, respectively. In particular, the ICCS code is used at a transmitter to perform DS modulation for user data, which is then sent to the in-phase channel. At the same time, the pilots are sent over the quadrature channel in a time-division multiplex (TDM) mode to construct a correlation matrix of ICCS code. At a receiver, MAI is removed by so-designed pilots plus a matched filter-bank. Simulation results show that the proposed ICCS multiple access (ICCSMA) can achieve a better performance than a traditional DS-CDMA system in a high signal to noise ratio region. ICCSMA serves as a bridge to turn CDMA to NOMA to enable massive connectivity in 5 G and beyond communications.
UR - http://www.scopus.com/inward/record.url?scp=85082041320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082041320&partnerID=8YFLogxK
U2 - 10.1109/TVT.2020.2965718
DO - 10.1109/TVT.2020.2965718
M3 - Article
AN - SCOPUS:85082041320
SN - 0018-9545
VL - 69
SP - 2878
EP - 2890
JO - IEEE Transactions on Vehicular Technology
JF - IEEE Transactions on Vehicular Technology
IS - 3
M1 - 8955953
ER -