Identification of chaotic systems using a self-constructing recurrent neural network

Yen Ping Chen, Jeen-Shing Wang

研究成果: Conference article

1 引文 斯高帕斯(Scopus)

摘要

This paper presents a self-constructing recurrent neural network (SCRNN) capable of building itself with a compact structure from input-output measurements for identification of chaotic systems. The proposed SCRNN is constituted by a static nonlinear network cascaded with a linear dynamic network. A unified learning algorithm consisting of two mechanisms, a hybrid weight initialization method and a parameter optimization method, has been developed for the structure and parameter identification. With this learning algorithm, the SCRNN is exempted from trial and error in structure initialization as well as parameterization. Computer simulations on discrete-time chaotic systems, including logistic and Henon mappings, validate that the proposed SCRNN is capable of capturing the dynamical behavior of chaotic systems with a compact network size.

原文English
頁(從 - 到)2150-2155
頁數6
期刊Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
3
出版狀態Published - 2005 十二月 1
事件IEEE Systems, Man and Cybernetics Society, Proceedings - 2005 International Conference on Systems, Man and Cybernetics - Waikoloa, HI, United States
持續時間: 2005 十月 102005 十月 12

    指紋

All Science Journal Classification (ASJC) codes

  • Engineering(all)

引用此