Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data

Wei Sheng Wu, Wen Hsiung Li, Bor Sen Chen

研究成果: Article同行評審

30 引文 斯高帕斯(Scopus)

摘要

Background: ChIP-chip data, which indicate binding of transcription factors (TFs) to DNA regions in vivo, are widely used to reconstruct transcriptional regulatory networks. However, the binding of a TF to a gene does not necessarily imply regulation. Thus, it is important to develop methods to identify regulatory targets of TFs from ChIP-chip data. Results: We developed a method, called Temporal Relationship Identification Algorithm (TRIA), which uses gene expression data to identify a TF's regulatory targets among its binding targets inferred from ChIP-chip data. We applied TRIA to yeast cell cycle microarray data and identified many plausible regulatory targets of cell cycle TFs. We validated our predictions by checking the enrichments for functional annotation and known cell cycle genes. Moreover, we showed that TRIA performs better than two published methods (MA-Network and MFA). It is known that co-regulated genes may not be co-expressed. TRIA has the ability to identify subsets of highly co-expressed genes among the regulatory targets of a TF. Different functional roles are found for different subsets, indicating the diverse functions a TF could have. Finally, for a control, we showed that TRIA also performs well for cell-cycle irrelevant TFs. Conclusion: Finding the regulatory targets of TFs is important for understanding how cells change their transcription program to adapt to environmental stimuli. Our algorithm TRIA is helpful for achieving this purpose.

原文English
文章編號188
期刊BMC Bioinformatics
8
DOIs
出版狀態Published - 2007 6月 8

All Science Journal Classification (ASJC) codes

  • 結構生物學
  • 生物化學
  • 分子生物學
  • 電腦科學應用
  • 應用數學

指紋

深入研究「Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data」主題。共同形成了獨特的指紋。

引用此