TY - JOUR
T1 - Imaging Spatiotemporal Hong-Ou-Mandel Interference of Biphoton States of Extremely High Schmidt Number
AU - Devaux, Fabrice
AU - Mosset, Alexis
AU - Moreau, Paul Antoine
AU - Lantz, Eric
N1 - Publisher Copyright:
© 2020 authors.
PY - 2020/9
Y1 - 2020/9
N2 - We report the experimental observation of a spatiotemporal Hong-Ou-Mandel (HOM) interference of biphoton states of extremely high Schmidt number. Two-photon interference of 1500 spatial modes and a total of more than 3×106 spatiotemporal modes is evidenced by measuring momentum spatial coincidences, without any prior selection of the photons in time and space coincidence, between the pixels of the far-field images of two strongly multimode spontaneous parametric down-conversion (SPDC) beams propagating through a HOM interferometer. The outgoing SPDC beams are recorded on two separate detector arrays operating in the photon-counting regime. The properties of HOM interference are investigated both in the time and space domains. We show that the two-photon interference exhibits temporal and two-dimensional spatial HOM dips with visibilities of 60% and widths in good agreement with the spatiotemporal coherence properties of the biphoton state. Moreover, we demonstrate that maxima of momentum spatial coincidences are evidenced within each image, in correspondence with these dips.
AB - We report the experimental observation of a spatiotemporal Hong-Ou-Mandel (HOM) interference of biphoton states of extremely high Schmidt number. Two-photon interference of 1500 spatial modes and a total of more than 3×106 spatiotemporal modes is evidenced by measuring momentum spatial coincidences, without any prior selection of the photons in time and space coincidence, between the pixels of the far-field images of two strongly multimode spontaneous parametric down-conversion (SPDC) beams propagating through a HOM interferometer. The outgoing SPDC beams are recorded on two separate detector arrays operating in the photon-counting regime. The properties of HOM interference are investigated both in the time and space domains. We show that the two-photon interference exhibits temporal and two-dimensional spatial HOM dips with visibilities of 60% and widths in good agreement with the spatiotemporal coherence properties of the biphoton state. Moreover, we demonstrate that maxima of momentum spatial coincidences are evidenced within each image, in correspondence with these dips.
UR - http://www.scopus.com/inward/record.url?scp=85092894541&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092894541&partnerID=8YFLogxK
U2 - 10.1103/PhysRevX.10.031031
DO - 10.1103/PhysRevX.10.031031
M3 - Article
AN - SCOPUS:85092894541
SN - 2160-3308
VL - 10
JO - Physical Review X
JF - Physical Review X
IS - 3
M1 - 031031
ER -