Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose

Hanie Hakimian, Sumin Pyo, Young Min Kim, Jungho Jae, Pau Loke Show, Gwang Hoon Rhee, Wei Hsin Chen, Young Kwon Park

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)


In this study, the use of oil sludge as the co-feeding feedstock on the catalytic pyrolysis of cellulose over various catalysts, such as Ni/HZSM-5, HZSM-5, HBeta, HY, and Al-MCM-41, was attempted for the first time. To know the catalytic co-pyrolysis effect, thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry measurement were utilized. Thermogravimetric analysis results indicated that Ni/HZSM-5 led to the lowest apparent activation energy (97.6 kJ/mol), followed by HY, HBeta, HZSM-5, and Al-MCM-41, suggesting the effective role of Ni providing the additional cracking and benzene, toluene, ethylbenzene and xylenes (BTEXs) formation. In addition, BTEXs production amount analyzed by pyrolyzer-gas chromatography/mass spectrometry was also highest by the use of Ni/HZSM-5 due to its proper pore size of HZSM-5 on BTEXs formation and additional effect of Ni. The experimental BTEXs yields on the catalytic co-pyrolysis of cellulose and oil sludge were higher than their theoretical values over all catalysts, suggesting their synergy effect. The highest synergistic effect was also achieved when 1/3 of cellulose/oil sludge mixture was applied as the feedstock.

出版狀態Published - 2022 1月 15

All Science Journal Classification (ASJC) codes

  • 土木與結構工程
  • 建築與營造
  • 建模與模擬
  • 可再生能源、永續發展與環境
  • 燃料技術
  • 能源工程與電力技術
  • 污染
  • 能源(全部)
  • 機械工業
  • 工業與製造工程
  • 管理、監督、政策法律
  • 電氣與電子工程


深入研究「Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose」主題。共同形成了獨特的指紋。