TY - JOUR
T1 - Increasing cytomegalovirus detection rate from respiratory tract specimens by a new laboratory-developed automated molecular diagnostic test
AU - Tsai, Huey Pin
AU - Yeh, Chun Sheng
AU - Lin, I. Ting
AU - Ko, Wen Chien
AU - Wang, Jen Ren
N1 - Funding Information:
Funding: This study was funded by National Cheng Kung University Hospital [grant number NCKUH-10708001] Tainan, Taiwan.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/7
Y1 - 2020/7
N2 - Lots of automated molecular methods for detecting cytomegalovirus (CMV) DNA in the blood are available, but seldom for various clinical specimens. This study was designed to establish a highly sensitive automated assay to detect CMV DNA in non-blood specimens. We designed a new QMT assay using QIAGEN artus CMV RG polymerase chain reaction (Q-CMV PCR) kit applied on the BD MAX system and compared with the other assays, including an RGQ assay (LabTurbo auto-extraction combined Q-CMV PCR kit on Rotor-Gene-Q instrument), and in-house PCR assay. A total of 1067 various clinical samples, including 426 plasma, 293 respiratory tract specimens (RTS), 127 stool, 101 cerebral spinal fluid, 90 vitreous humours were analysed. Examining CMV DNA in simultaneous specimens of the same immunocompromised patient with respiratory symptoms, the detection rate of RTS (93.6%, 88/94) was significant higher than plasma (65.9%, 62/94). The positive rates for plasma samples with a low CMV viral load (<137 IU/mL) and diagnostic sensitivity of QMT, RGQ, and in-house assays were 65% and 99.1%, 45% and 100%, 5% and 65.5%, respectively. The QMT assay performs better, with shorter operational and turnaround time than the other assays, enabling the effective and early detection of CMV infection in various clinical specimens, particularly for RTS.
AB - Lots of automated molecular methods for detecting cytomegalovirus (CMV) DNA in the blood are available, but seldom for various clinical specimens. This study was designed to establish a highly sensitive automated assay to detect CMV DNA in non-blood specimens. We designed a new QMT assay using QIAGEN artus CMV RG polymerase chain reaction (Q-CMV PCR) kit applied on the BD MAX system and compared with the other assays, including an RGQ assay (LabTurbo auto-extraction combined Q-CMV PCR kit on Rotor-Gene-Q instrument), and in-house PCR assay. A total of 1067 various clinical samples, including 426 plasma, 293 respiratory tract specimens (RTS), 127 stool, 101 cerebral spinal fluid, 90 vitreous humours were analysed. Examining CMV DNA in simultaneous specimens of the same immunocompromised patient with respiratory symptoms, the detection rate of RTS (93.6%, 88/94) was significant higher than plasma (65.9%, 62/94). The positive rates for plasma samples with a low CMV viral load (<137 IU/mL) and diagnostic sensitivity of QMT, RGQ, and in-house assays were 65% and 99.1%, 45% and 100%, 5% and 65.5%, respectively. The QMT assay performs better, with shorter operational and turnaround time than the other assays, enabling the effective and early detection of CMV infection in various clinical specimens, particularly for RTS.
UR - http://www.scopus.com/inward/record.url?scp=85088031569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088031569&partnerID=8YFLogxK
U2 - 10.3390/microorganisms8071063
DO - 10.3390/microorganisms8071063
M3 - Article
AN - SCOPUS:85088031569
SN - 2076-2607
VL - 8
SP - 1
EP - 12
JO - Microorganisms
JF - Microorganisms
IS - 7
M1 - 1063
ER -