Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more

研究成果: Article

10 引文 (Scopus)

摘要

Community ecology is traditionally species-based and assumes that species comprise identical individuals. However, intraspecific variation is ubiquitous in nature because of ontogenetic growth and critical in food-we dynamics. To understand individual interaction-mediated food webs, researchers have recently focused on body size as the most fundamental biological aspect and assessed a parameter called the predator–prey mass ratio (PPMR). Herein, I review the conceptual development of the PPMR and suggest four major concerns regarding its measurement: (1) PPMR should be measured at the individual level because species-averaged values distort actual feeding relationships, (2) individual-level PPMR data on gape-unconstrained predators (e.g., terrestrial carnivores) are limited because previous studies have targeted gape-limited fish predators, (3) predators’ prey size selectivity (preferred PPRM) is conceptually different from dietary prey size (realized PPMR) and should be distinguished by incorporating environmental prey abundance information, and (4) determinants of preferred PPMR, rather than those of realized PPMR, should be identified to describe size-dependent predation. Future studies are encouraged to explore not only predation but also other interaction types (e.g., competition, mutualism, and herbivory) at the individual level. However, this is not likely to occur while ecological communities are still considered to be interspecific interaction networks. To resolve this situation and more comprehensively understand biodiversity and ecosystem functioning, I suggest that community ecology requires a paradigm shift in the unit of interaction from species to individuals, similar to evolutionary biology, which revolutionized the unit of selection, because interactions occur between individuals.

原文English
頁(從 - 到)5-12
頁數8
期刊Ecological Research
32
發行號1
DOIs
出版狀態Published - 2017 一月 1

指紋

community ecology
prey size
predators
predator
predation
mutualism
interspecific interaction
paradigm shift
carnivores
evolutionary biology
intraspecific variation
food webs
carnivore
herbivory
herbivores
body size
researchers
food web
biodiversity
Biological Sciences

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics

引用此文

@article{47c9039cb01547f1880d324f70fef539,
title = "Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more",
abstract = "Community ecology is traditionally species-based and assumes that species comprise identical individuals. However, intraspecific variation is ubiquitous in nature because of ontogenetic growth and critical in food-we dynamics. To understand individual interaction-mediated food webs, researchers have recently focused on body size as the most fundamental biological aspect and assessed a parameter called the predator–prey mass ratio (PPMR). Herein, I review the conceptual development of the PPMR and suggest four major concerns regarding its measurement: (1) PPMR should be measured at the individual level because species-averaged values distort actual feeding relationships, (2) individual-level PPMR data on gape-unconstrained predators (e.g., terrestrial carnivores) are limited because previous studies have targeted gape-limited fish predators, (3) predators’ prey size selectivity (preferred PPRM) is conceptually different from dietary prey size (realized PPMR) and should be distinguished by incorporating environmental prey abundance information, and (4) determinants of preferred PPMR, rather than those of realized PPMR, should be identified to describe size-dependent predation. Future studies are encouraged to explore not only predation but also other interaction types (e.g., competition, mutualism, and herbivory) at the individual level. However, this is not likely to occur while ecological communities are still considered to be interspecific interaction networks. To resolve this situation and more comprehensively understand biodiversity and ecosystem functioning, I suggest that community ecology requires a paradigm shift in the unit of interaction from species to individuals, similar to evolutionary biology, which revolutionized the unit of selection, because interactions occur between individuals.",
author = "Takefumi Nakazawa",
year = "2017",
month = "1",
day = "1",
doi = "10.1007/s11284-016-1408-1",
language = "English",
volume = "32",
pages = "5--12",
journal = "Ecological Research",
issn = "0912-3814",
publisher = "Springer Japan",
number = "1",

}

TY - JOUR

T1 - Individual interaction data are required in community ecology

T2 - a conceptual review of the predator–prey mass ratio and more

AU - Nakazawa, Takefumi

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Community ecology is traditionally species-based and assumes that species comprise identical individuals. However, intraspecific variation is ubiquitous in nature because of ontogenetic growth and critical in food-we dynamics. To understand individual interaction-mediated food webs, researchers have recently focused on body size as the most fundamental biological aspect and assessed a parameter called the predator–prey mass ratio (PPMR). Herein, I review the conceptual development of the PPMR and suggest four major concerns regarding its measurement: (1) PPMR should be measured at the individual level because species-averaged values distort actual feeding relationships, (2) individual-level PPMR data on gape-unconstrained predators (e.g., terrestrial carnivores) are limited because previous studies have targeted gape-limited fish predators, (3) predators’ prey size selectivity (preferred PPRM) is conceptually different from dietary prey size (realized PPMR) and should be distinguished by incorporating environmental prey abundance information, and (4) determinants of preferred PPMR, rather than those of realized PPMR, should be identified to describe size-dependent predation. Future studies are encouraged to explore not only predation but also other interaction types (e.g., competition, mutualism, and herbivory) at the individual level. However, this is not likely to occur while ecological communities are still considered to be interspecific interaction networks. To resolve this situation and more comprehensively understand biodiversity and ecosystem functioning, I suggest that community ecology requires a paradigm shift in the unit of interaction from species to individuals, similar to evolutionary biology, which revolutionized the unit of selection, because interactions occur between individuals.

AB - Community ecology is traditionally species-based and assumes that species comprise identical individuals. However, intraspecific variation is ubiquitous in nature because of ontogenetic growth and critical in food-we dynamics. To understand individual interaction-mediated food webs, researchers have recently focused on body size as the most fundamental biological aspect and assessed a parameter called the predator–prey mass ratio (PPMR). Herein, I review the conceptual development of the PPMR and suggest four major concerns regarding its measurement: (1) PPMR should be measured at the individual level because species-averaged values distort actual feeding relationships, (2) individual-level PPMR data on gape-unconstrained predators (e.g., terrestrial carnivores) are limited because previous studies have targeted gape-limited fish predators, (3) predators’ prey size selectivity (preferred PPRM) is conceptually different from dietary prey size (realized PPMR) and should be distinguished by incorporating environmental prey abundance information, and (4) determinants of preferred PPMR, rather than those of realized PPMR, should be identified to describe size-dependent predation. Future studies are encouraged to explore not only predation but also other interaction types (e.g., competition, mutualism, and herbivory) at the individual level. However, this is not likely to occur while ecological communities are still considered to be interspecific interaction networks. To resolve this situation and more comprehensively understand biodiversity and ecosystem functioning, I suggest that community ecology requires a paradigm shift in the unit of interaction from species to individuals, similar to evolutionary biology, which revolutionized the unit of selection, because interactions occur between individuals.

UR - http://www.scopus.com/inward/record.url?scp=84992750990&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84992750990&partnerID=8YFLogxK

U2 - 10.1007/s11284-016-1408-1

DO - 10.1007/s11284-016-1408-1

M3 - Article

AN - SCOPUS:84992750990

VL - 32

SP - 5

EP - 12

JO - Ecological Research

JF - Ecological Research

SN - 0912-3814

IS - 1

ER -